CRPA of SrVO3: Difference between revisions

From VASP Wiki
 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:gw}}
{{Template:GW - Tutorial}}
The following tutorial describes how to perform [[Constrained–random-phase–approximation_formalism|cRPA calculations]], which is available as of VASP 6.
== Task ==  
== Task ==  
 
Calculation of the Coulomb matrix elements <math>U_{ijkl}(\omega=0)</math> in the constrained Random Phase Approximation ([[Constrained-random-phase approximation|cRPA]]) of SrVO<sub>3</sub> between the Vanadium t<sub>2g</sub> states.
Calculation of the Coulomb matrix elements <math>U_{ijkl}(\omega=0)</math> in the constrained Random Phase Approximation ([[Constrained Random Phase Approximation|CRPA]]) of SrVO<sub>3</sub> between the Vanadium t<sub>2g</sub> states.
----
----


Performing a CRPA calculation with VASP is a 3-step procedure: a DFT groundstate calculation, a calculation to obtain a number of virtual orbitals, and the actual CRPA calculation itself.
Performing a cRPA calculation with VASP is a 3-step procedure: a DFT groundstate calculation, a calculation to obtain a number of virtual orbitals, and the actual cRPA calculation itself.


'''N.B.:''' This example involves quite a number of individual calculations.
'''N.B.:''' This example involves quite a number of individual calculations.
The easiest way to run this example is to execute:
The easiest way to run this example is to execute:
  ./doall.sh
  ./doall.sh
And compare the output of the different steps (DFT, GW, HSE) by:
./plotall.sh


In any case, one can consider the <tt>doall.sh</tt> script to be an overview of the steps described below.
In any case, one can consider the <tt>doall.sh</tt> script to be an overview of the steps described below.
Line 21: Line 18:
*{{TAG|INCAR}} (see INCAR.DFT)
*{{TAG|INCAR}} (see INCAR.DFT)
   
   
  {{TAGBL|SYSTEM}}  = SrVO3                       # system name
  {{TAGBL|SYSTEM}}  = SrVO3   # system name
  {{TAGBL|NBANDS}} = 36                           # small number of bands
  {{TAGBL|NBANDS}} = 36       # small number of bands
  {{TAGBL|ISMEAR}} = 0                             # Gaussian smearing
  {{TAGBL|ISMEAR}} = -1        # Fermi smearing
  {{TAGBL|EDIFF}} = 1E-8                           # high precision for groundstate calculation
{{TAGBL|SIGMA}} = 0.1        # electronic temperature in eV (1eV ~ 11604K)
  {{TAGBL|KPAR}} = 2                               # parallelization of k-points in two groups
  {{TAGBL|EDIFF}} = 1E-8       # high precision for groundstate calculation
  {{TAGBL|KPAR}} = 2           # parallelization of k-points in two groups


Copy the aforementioned file to {{TAG|INCAR}}:
Copy the aforementioned file to {{TAG|INCAR}}:
Line 55: Line 53:
<pre>
<pre>
Automatically generated mesh
Automatically generated mesh
      0
0
Gamma
Gamma
  4 4 4
  4 4 4
Line 68: Line 66:
Use following {{TAG|INCAR}} file to increase the number of virtual states and to determine the long-wave limit of the polarizability (stored in {{TAG|WAVEDER}}):
Use following {{TAG|INCAR}} file to increase the number of virtual states and to determine the long-wave limit of the polarizability (stored in {{TAG|WAVEDER}}):


*{{TAG|INCAR}} (see INCAR.DIAG)
*{{TAG|INCAR}} (see INCAR.PBE)
   
   
  {{TAGBL|SYSTEM}} = SrVO3                         # system name
  {{TAGBL|SYSTEM}} = SrVO3         # system name
  {{TAGBL|ISMEAR}} = 0                             # Gaussian smearing
  {{TAGBL|ISMEAR}} = -1            # Fermi smearing
  {{TAGBL|KPAR}} = 2                               # parallelization of k-points in two groups
{{TAGBL|SIGMA}} = 0.1            # electronic temperature in eV (1eV ~ 11604K)
  {{TAGBL|ALGO}} = Exact                           # exact diagonalization
  {{TAGBL|KPAR}} = 2               # parallelization of k-points in two groups
  {{TAGBL|NELM}} = 1                               # one electronic step suffices, since WAVECAR from previous step is present
  {{TAGBL|ALGO}} = Exact           # exact diagonalization
  {{TAGBL|NBANDS}} = 96                           # need for a lot of bands in GW
  {{TAGBL|NELM}} = 1               # one electronic step suffices, since WAVECAR from previous step is present
  {{TAGBL|LOPTICS}} = .TRUE.                       # we need d phi/ d k  for GW calculations for long-wave limit
  {{TAGBL|NBANDS}} = 96             # need for a lot of bands in GW
  {{TAGBL|LOPTICS}} = .TRUE.       # we need d phi/ d k  for GW calculations for long-wave limit
{{TAGBL|LFINITE_TEMPERATURE}} = T # compute all optical matrix elements (only required for CRPAR)


Restart VASP.
Restart VASP.
At this stage it is a good idea to make a safety copy of the {{TAG|WAVECAR}} and {{TAG|WAVEDER}} files since we will repeatedly need them in the calculations that follow:  
At this stage it is a good idea to make a safety copy of the {{TAG|WAVECAR}} and {{TAG|WAVEDER}} files since we will repeatedly need them in the calculations that follow:  
  cp {{TAGBL|WAVECAR}} WAVECAR.DIAG
  cp {{TAGBL|WAVECAR}} WAVECAR.PBE
  cp {{TAGBL|WAVEDER}} WAVEDER.DIAG
  cp {{TAGBL|WAVEDER}} WAVEDER.PBE


== CRPA Calculation ==
== cRPA Calculation ==
Calculate the CRPA interaction parameters for the t2g states by using the PBE wavefunction as input
Calculate the cRPA interaction parameters for the t2g states by using the PBE wavefunction as input
  cp WAVECAR.DIAG {{TAGBL|WAVECAR}}
  cp WAVECAR.PBE {{TAGBL|WAVECAR}}
  cp WAVEDER.DIAG {{TAGBL|WAVEDER}}
  cp WAVEDER.PBE {{TAGBL|WAVEDER}}
Use following Wannier projection for the basis:


*{{TAG|wannier90.win}} (see wannier90.win.CRPA)
And use following input file as
  num_wann =   3
*{{TAG|INCAR}} (see INCAR.CRPA) and run vasp
{{TAGBL|SYSTEM}} = SrVO3            # system name
{{TAGBL|ISMEAR}} = -1              # Fermi smearing
{{TAGBL|SIGMA}} = 0.1              # electronic temperature in eV (1eV ~ 11604K)
{{TAGBL|NCSHMEM}} = 1              # switch off shared memory for chi
{{TAGBL|ALGO}} = CRPA              # Switch on CRPA
{{TAGBL|NBANDS}} = 96              # CRPA needs many empty states
{{TAGBL|PRECFOCK}} = Fast          # fast mode for FFTs
{{TAGBL|NTARGET_STATES}} = 1 2 3    # exclude wannier states 1 - 3 in screening
{{TAGBL|LWRITE_WANPROJ}} = .TRUE.  # write wannier projection file
#{{TAGBL|LFINITE_TEMPERATURE}} = T  # T>0 formalism can be avoided here, because U computed only at omega=0
{{NB|warning|As of version 6.2.0 run this tutorial successfully by adding following lines to INCAR. For older version copy wannier90.win.CRPA to wannier90.win and omit following lines in INCAR.}}
  {{TAGBL|NUM_WANN}} = 3  
{{TAGBL|WANNIER90_WIN}} = "
  num_bands=  96
  num_bands=  96
   
   
  # PBE energy window of t2g states (band 21-23)
  # because bands 21, 22, 23 do not cross with other bands
  dis_win_min = 6.4
  # one can exclude all other bands in wannierization
  dis_win_max = 9.0
# and omit the definition of an energy window like so
  exclude_bands = 1-20, 24-96
 
  begin projections
  begin projections
   V:dxy;dxz;dyz
   V:dxy;dxz;dyz
  end projections
  end projections
 
  "
Copy this file to wannier90.win
The cRPA interaction values for <math>\omega=0</math> can be found in the {{TAG|OUTCAR}}:
cp wannier90.win.CRPA wannier90.win
 
And use following input file as
*{{TAG|INCAR}} (see INCAR.CRPA)
{{TAGBL|SYSTEM}} = SrVO3                        # system name
{{TAGBL|ISMEAR}} = 0                            # Gaussian smearing
{{TAGBL|NCSHMEM}} = 1                            # switch off shared memory for chi
{{TAGBL|ALGO}} = CRPA                            # Switch on CRPA
{{TAGBL|NBANDS}} = 96                            # CRPA needs many empty states
{{TAGBL|PRECFOCK}} = Fast                        # fast mode for FFTs
{{TAGBL|NTARGET_STATES}} = 1 2 3                # exclude wannier states 1 - 3 in screening
  {{TAGBL|LWRITE_WANPROJ}} = .TRUE.                # write wannier projection file
 
and run VASP. The CRPA interaction values for <math>\omega=0</math> can be found in the {{TAG|OUTCAR}}:
  spin components:  1  1, frequency:    0.0000    0.0000
  spin components:  1  1, frequency:    0.0000    0.0000
   
   
  screened Coulomb repulsion U_iijj between MLWFs:
  screened Coulomb repulsion U_iijj between MLWFs:
         1        2        3
         1        2        3
     1    3.3746   2.3385   2.3385
     1    3.3459   2.3455   2.3455
     2    2.3385   3.3746   2.3385
     2    2.3455   3.3459   2.3455
     3    2.3385   2.3385   3.3746
     3    2.3455   2.3455   3.3459
   
   
  screened Coulomb repulsion U_ijji between MLWFs:
  screened Coulomb repulsion U_ijji between MLWFs:
         1        2        3
         1        2        3
     1    3.3746   0.4429   0.4429
     1    3.3459   0.4281   0.4281
     2    0.4429   3.3746   0.4429
     2    0.4281   3.3459   0.4281
     3    0.4429   0.4429   3.3746
     3    0.4281   0.4281   3.3459
   
   
  screened Coulomb repulsion U_ijij between MLWFs:
  screened Coulomb repulsion U_ijij between MLWFs:
         1        2        3
         1        2        3
     1    3.3746   0.4429   0.4429
     1    3.3459   0.4281   0.4281
     2    0.4429   3.3746   0.4429
     2    0.4281   3.3459   0.4281
     3    0.4429   0.4429   3.3746
     3    0.4281   0.4281   3.3459
   
   
  averaged interaction parameter
  averaged interaction parameter
  screened Hubbard U =    3.3746  -0.0000
  screened Hubbard U =    3.3459    0.0000
  screened Hubbard u =    2.3385   0.0000
  screened Hubbard u =    2.3455   0.0000
  screened Hubbard J =    0.4429   -0.0000
  screened Hubbard J =    0.4281   -0.0000
 
The full interaction matrix is written to {{FILE|UIJKL}}.
:'''N.B.:''' The frequency point <math>\omega</math> can be set by {{TAG|OMEGAMAX}} in the INCAR. For instance to evaluate the CRPA interaction matrix at <math>\omega=10</math> eV, add
{{NB|mind|The frequency point <math>\omega</math> can be set by {{TAG|OMEGAMAX}} in the INCAR.}}
For instance to evaluate the cRPA interaction matrix at <math>\omega=10</math> eV, add
   {{TAGBL|OMEGAMAX}} = 10
   {{TAGBL|OMEGAMAX}} = 10
to the INCAR and restart VASP. In contrast, adding following two lines to the {{TAG|INCAR}}  
to the INCAR and restart VASP. In contrast, adding following two lines to the {{TAG|INCAR}}  
Line 150: Line 150:


In addition, the bare Coulomb interaction matrix is calculated for a high {{TAG|VCUTOFF}} and low energy cutoff {{TAG|ENCUTGW}} and written in that order to the {{TAG|OUTCAR}} file. Look for the lines similar to:
In addition, the bare Coulomb interaction matrix is calculated for a high {{TAG|VCUTOFF}} and low energy cutoff {{TAG|ENCUTGW}} and written in that order to the {{TAG|OUTCAR}} file. Look for the lines similar to:
  spin components:  1  1
  spin components:  1  1
 
  bare Coulomb repulsion V_iijj between MLWFs:
  bare Coulomb repulsion V_iijj between MLWFs:
         1        2        3
         1        2        3
Line 158: Line 157:
     2  15.0984  16.3485  15.0984
     2  15.0984  16.3485  15.0984
     3  15.0984  15.0984  16.3485
     3  15.0984  15.0984  16.3485
 
  bare Coulomb repulsion V_ijji between MLWFs:
  bare Coulomb repulsion V_ijji between MLWFs:
         1        2        3
         1        2        3
Line 164: Line 163:
     2    0.5351  16.3485    0.5351
     2    0.5351  16.3485    0.5351
     3    0.5351    0.5351  16.3485
     3    0.5351    0.5351  16.3485
 
  bare Coulomb repulsion V_ijij between MLWFs:
  bare Coulomb repulsion V_ijij between MLWFs:
         1        2        3
         1        2        3
Line 175: Line 174:
  bare Hubbard u =  15.0984  -0.0000
  bare Hubbard u =  15.0984  -0.0000
  bare Hubbard J =    0.5351    0.0000
  bare Hubbard J =    0.5351    0.0000
Similar to the effectively screened interaction the full output is written to {{FILE|VIJKL}}.


=== CRPA calculation with spacetime Algorithm ===
=== cRPA calculation on Matsubara axis ===
{{NB|mind|Available as of VASP.6.5.2.}}
Note that the same frequency grid is used as for {{TAG|ALGO}}=RPA (RPA correlation energy calculation) and can not be changed directly.
Note that the same frequency grid is used as for {{TAG|ALGO}}=RPA (RPA correlation energy calculation) and can not be changed directly.
To calculate the CRPA interaction for a set of automatically chosen imaginary frequency points use once again the PBE wavefunction as input
To calculate the cRPA interaction for a set of automatically chosen imaginary frequency points use once again the PBE wavefunction as input
  cp WAVECAR.DIAG {{TAGBL|WAVECAR}}
  cp WAVECAR.PBE {{TAGBL|WAVECAR}}
  cp WAVEDER.DIAG {{TAGBL|WAVEDER}}
  cp WAVEDER.PBE {{TAGBL|WAVEDER}}
Currently, this step requires uses the {{TAG|WANPROJ}} file from previous step, no wannier90.win file is necessary.
Currently, this step requires the {{TAG|WANPROJ}} file from previous step, no wannier90.win file is necessary.
You can also, delete {{TAG|WANPROJ}} and define a wannier projection as in the previous step in the {{FILE|INCAR}}.  


Select the space-time CRPA algorithm with following file:
Select the space-time cRPA algorithm with following file:
*{{TAG|INCAR}} (see INCAR.CRPAR)
*{{TAG|INCAR}} (see INCAR.CRPAR)
   
   
  {{TAGBL|SYSTEM}} = SrVO3                         # system name
  {{TAGBL|SYSTEM}} = SrVO3             # system name
  {{TAGBL|ISMEAR}} = 0                            # Gaussian smearing
{{TAGBL|LFINITE_TEMPERATURE}} = T    # use finite temperature formalism
  {{TAGBL|NCSHMEM}} = 1                           # switch off shared memory for chi
  {{TAGBL|ISMEAR}} = -1                # required for finite temperature algorithm
  {{TAGBL|ALGO}} = CRPAR                           # Switch on CRPA on imaginary axis
  {{TAGBL|SIGMA}} = 0.1               # electron temperature in eV (1 eV ~ 11000 K)
  {{TAGBL|NBANDS}} = 96                           # CRPA needs many empty states
  {{TAGBL|ALGO}} = CRPAR               # Switch on CRPA on imaginary axis
  {{TAGBL|PRECFOCK}} = Fast                       # fast mode for FFTs
  {{TAGBL|NBANDS}} = 96               # CRPA needs many empty states
  {{TAGBL|NTARGET_STATES}} = 1 2 3                 # exclude wannier states 1 - 3 in screening
  {{TAGBL|PRECFOCK}} = Fast           # fast mode for FFTs
  {{TAGBL|NCRPA_BANDS}} = 21 22 23                 # remove bands 21-23 in screening, currently required for space-time algo
  {{TAGBL|NTARGET_STATES}} = 1 2 3     # exclude wannier states 1 - 3 in screening
  {{TAGBL|NOMEGA}} = 12                            # use 12 imaginary frequency points
  {{TAGBL|NCRPA_BANDS}} = 21 22 23     # remove bands 21-23 in screening, currently required for space-time algo
  {{TAGBL|NTAUPAR}} = 4                            # distribute 12 time points into 4 groups
  {{TAGBL|NOMEGA}} = 8                # use 8 imaginary frequency points
  {{TAGBL|NOMEGA_DUMP}} = 0            # write WFULLxxxx.tmp files at omega=0, used for off-centre Coulomb integrals in next step
 


Run VASP and make a copy of the output file
Run VASP and make a copy of the output file
  cp {{TAGBL|OUTCAR}} OUTCAR.CRPAR
  cp {{TAGBL|OUTCAR}} OUTCAR.CRPAR


After a successful run, the interaction values are written to the {{TAG|OUTCAR}} file. Here is the result for the first frequency point:
After a successful run, the interaction values at {{TAGBL|NOMEGA}}+1 frequencies are written to the {{TAG|OUTCAR}} file, where the first point  
spin components:  1  1, frequency:    0.0000    0.2248
is always <math>\omega=0</math>:
  spin components:  1  1, frequency:    0.0000    0.0000
   
   
  screened Coulomb repulsion U_iijj between MLWFs:
  screened Coulomb repulsion U_iijj between MLWFs:
         1        2        3
         1        2        3
     1    3.3798   2.3436   2.3436
     1    3.3450   2.3447   2.3447
     2    2.3436   3.3798   2.3436
     2    2.3447   3.3450   2.3447
     3    2.3436   2.3436   3.3798
     3    2.3447   2.3447   3.3450
...
   
   
  screened Coulomb repulsion U_ijji between MLWFs:
  spin components: 1 1, frequency:   0.0000  109.6955
        1         2        3
    1   3.3798   0.4433    0.4433
    2    0.4433    3.3798    0.4433
    3    0.4433    0.4433    3.3798
   
   
  screened Coulomb repulsion U_ijij between MLWFs:
  screened Coulomb repulsion U_iijj between MLWFs:
         1        2        3
         1        2        3
     1   3.3798    0.4433    0.4433
     1   15.2510  14.0759  14.0759
     2   0.4433    3.3798    0.4433
     2   14.0759  15.2510  14.0759
     3   0.4433    0.4433    3.3798
     3   14.0759  14.0759  15.2510
 
averaged interaction parameter
The complete matrix at zero frequency is also written to {{FILE|UIJKL}}, while the result at the first frequency point of the minimax grid{{cite|Kaltak:PRB:2020}} is found in {{FILE|UIJKL}}.1 and so on.  
screened Hubbard U =   3.3798  -0.0000
 
screened Hubbard u =   2.3436    0.0000
==== Optional: Analytic continuation ====
  screened Hubbard J =   0.4433  -0.0000
To obtain the effective interaction on the real frequency axis from the imaginary axis (stored in {{FILE|UIJKL}}.*) following python code can be used in a [https://jupyter.org/ jupyter notebook]:
<syntaxhighlight lang="python" line>
import numpy as np
from scipy.interpolate import AAA
import matplotlib.pyplot as plt
# results stored in NOMEGA dimensional array
nomega=24
u = np.zeros( nomega, dtype='complex' ) 
# one-site indices
idx=[0,40,80 ]
# store one-site bare interaction
v = np.sum( np.loadtxt('VIJKL').T[4][idx] )/len(idx)
for i in range(nomega):
    raw = np.loadtxt( 'UIJKL.{omega:d}'.format(omega=i+1) )
    u[i] = np.sum( raw.T[4][idx] + 1j * raw.T[5][idx] ) / len(idx)
# extract omega points
!grep "omega =" UIJKL.{?,??} | awk '{print $5}' > omegas.dat
omegas=np.loadtxt( 'omegas.dat' )*1j
# use AAA algorithm for analytic continuation
u_cont = AAA(omegas,u )
# plot real part of U and bare interaction V
z = np.linspace( 0, 200, num=1000)
fig, ax = plt.subplots()
ax.plot( z, u_cont(z).real, '-', color='r', label='U')
ax.axhline(y=v, color='b', linestyle='-', label='V')
ax.legend()
# add low-frequency regime as an inset
zlow=np.linspace( 0, 20, num=1000)
inset_ax = ax.inset_axes([0.35, 0.1, 0.6, 0.6]) # [left, bottom, width, height]
inset_ax.plot(zlow, u_cont(zlow), color='red')
plt.xlabel('$\omega$ [eV]')
plt.show()
</syntaxhighlight>
[[File:SrVO3 U omega acont.png|480px]]
{{NB|tip|Increase {{TAG|NOMEGA}} points to resolve more details on the real frequency axis.}}
 
== Off-centre Coulomb integrals ==
Every cRPA job writes the effectively screened Coulomb kernel (in reciprocal space) at zero frequency to {{FILE|WFULLxxxx.tmp}} files.
These files can be read in and off-centre Coulomb integrals can be evaluated using following input:
{{TAGBL|ALGO}} = 2E4WA                          # Compute off-centre Coulomb integrals
{{TAGBL|ISMEAR}} = -1                            # Fermi smearing           
{{TAGBL|SIGMA}} = 0.1                            # electronic temperature
{{TAGBL|NBANDS}} = 96                            # use same number of bands as stored in WAVECAR
{{TAGBL|ALGO}} = 2E4WA                          # Compute off-centre Coulomb integrals
{{TAGBL|PRECFOCK}} = Fast                        # fast mode for FFTs
{{TAGBL|NTARGET_STATES}} = 1 2 3                # Wannier states for which Coulomb integrals are evaluated


:'''N.B.:''' The number of frequency points should be large enough to guarantee for an accurate Fourier transformation of the CRPA polarizability matrix from the imaginary time to imaginary frequency domain. See [[ACFDT/RPA calculations#Low_scaling_ACFDT.2FRPA_algorithm|ACFDT/RPA calculations]] for more information.
The bare off-centre Coulomb integrals are written to {{FILE|VRijkl}}, while the effectively screened ones are found in {{FILE|URijkl}}:
# File generated by VASP contains Coulomb matrix elements
# U_ijkl = [ij|kl]
#  I  J  K  L          RE(U_IJKL)          IM(U_IJKL)
# R:    1  0.000000  0.000000  0.000000
    1  1  1  1        3.3450226866        0.0000000000
    2  1  1  1        0.0000058776        0.0000006717
    3  1  1  1        0.0000026927      -0.0000003292
...
    3  3  3  3        3.3450230976        0.0000000000
# R:    2  0.000000  0.000000  1.000000
    1  1  1  1        0.7321605022      -0.0001554484
    2  1  1  1        0.0000021144        0.0000002295
...
{{NB|mind|Available as of VASP.6.5.2.}}


== Downloads ==  
== Downloads ==  
[http://www.vasp.at/vasp-workshop/examples/CRPA_of_SrVO3.tgz CRPA_of_SrVO3.tgz]
[[Media:CRPA of SrVO3.zip| CRPA_of_SrVO3.zip]]


{{Template:gw}}
{{Template:GW - Tutorial}}


Back to the [[The_VASP_Manual|main page]].
Back to the [[The_VASP_Manual|main page]].


[[Category:Examples]]
[[Category:Examples]][[Category:Constrained-random-phase approximation]]

Latest revision as of 09:10, 28 March 2025

The following tutorial describes how to perform cRPA calculations, which is available as of VASP 6.

Task

Calculation of the Coulomb matrix elements in the constrained Random Phase Approximation (cRPA) of SrVO3 between the Vanadium t2g states.


Performing a cRPA calculation with VASP is a 3-step procedure: a DFT groundstate calculation, a calculation to obtain a number of virtual orbitals, and the actual cRPA calculation itself.

N.B.: This example involves quite a number of individual calculations. The easiest way to run this example is to execute:

./doall.sh

In any case, one can consider the doall.sh script to be an overview of the steps described below.

DFT groundstate calculation

The first step is a conventional DFT (in this case PBE) groundstate calculation.

SYSTEM  = SrVO3    # system name
NBANDS = 36        # small number of bands
ISMEAR = -1        # Fermi smearing
SIGMA = 0.1        # electronic temperature in eV (1eV ~ 11604K)
EDIFF = 1E-8       # high precision for groundstate calculation
KPAR = 2           # parallelization of k-points in two groups

Copy the aforementioned file to INCAR:

cp INCAR.DFT INCAR

The POSCAR file describes the structure of the system:

SrVO3
3.84652  #cubic fit for 6x6x6 k-points
 +1.0000000000  +0.0000000000  +0.0000000000 
 +0.0000000000  +1.0000000000  +0.0000000000 
 +0.0000000000  +0.0000000000  +1.0000000000 
Sr V O
 1 1 3
Direct
 +0.0000000000  +0.0000000000  +0.0000000000 
 +0.5000000000  +0.5000000000  +0.5000000000 
 +0.5000000000  +0.5000000000  +0.0000000000 
 +0.5000000000  +0.0000000000  +0.5000000000 
 +0.0000000000  +0.5000000000  +0.5000000000

This file remains unchanged in the following.

The KPOINTS file describes how the first Brillouin zone is sampled. In the first step we use a uniform k-point sampling:

Automatically generated mesh
 0
Gamma
 4 4 4
 0 0 0

Mind: this is definitely not dense enough for a high-quality description of SrVO3, but in the interest of speed we will live with it.

Run VASP. If all went well, one should obtain a WAVECAR file containing the PBE wavefunction.

Obtain DFT virtual orbitals and long-wave limit

Use following INCAR file to increase the number of virtual states and to determine the long-wave limit of the polarizability (stored in WAVEDER):

SYSTEM = SrVO3          # system name
ISMEAR = -1             # Fermi smearing
SIGMA = 0.1             # electronic temperature in eV (1eV ~ 11604K)
KPAR = 2                # parallelization of k-points in two groups
ALGO = Exact            # exact diagonalization
NELM = 1                # one electronic step suffices, since WAVECAR from previous step is present
NBANDS = 96             # need for a lot of bands in GW
LOPTICS = .TRUE.        # we need d phi/ d k  for GW calculations for long-wave limit
LFINITE_TEMPERATURE = T # compute all optical matrix elements (only required for CRPAR)

Restart VASP. At this stage it is a good idea to make a safety copy of the WAVECAR and WAVEDER files since we will repeatedly need them in the calculations that follow:

cp WAVECAR WAVECAR.PBE
cp WAVEDER WAVEDER.PBE

cRPA Calculation

Calculate the cRPA interaction parameters for the t2g states by using the PBE wavefunction as input

cp WAVECAR.PBE WAVECAR
cp WAVEDER.PBE WAVEDER

And use following input file as

  • INCAR (see INCAR.CRPA) and run vasp
SYSTEM = SrVO3            # system name
ISMEAR = -1               # Fermi smearing
SIGMA = 0.1               # electronic temperature in eV (1eV ~ 11604K)
NCSHMEM = 1               # switch off shared memory for chi
ALGO = CRPA               # Switch on CRPA
NBANDS = 96               # CRPA needs many empty states
PRECFOCK = Fast           # fast mode for FFTs
NTARGET_STATES = 1 2 3    # exclude wannier states 1 - 3 in screening
LWRITE_WANPROJ = .TRUE.   # write wannier projection file
#LFINITE_TEMPERATURE = T  # T>0 formalism can be avoided here, because U computed only at omega=0
Warning: As of version 6.2.0 run this tutorial successfully by adding following lines to INCAR. For older version copy wannier90.win.CRPA to wannier90.win and omit following lines in INCAR.
NUM_WANN = 3 
WANNIER90_WIN = "
num_bands=   96

# because bands 21, 22, 23 do not cross with other bands
# one can exclude all other bands in wannierization
# and omit the definition of an energy window like so
exclude_bands = 1-20, 24-96
begin projections
 V:dxy;dxz;dyz
end projections
"

The cRPA interaction values for can be found in the OUTCAR:

spin components:  1  1, frequency:    0.0000    0.0000

screened Coulomb repulsion U_iijj between MLWFs:
        1         2         3
   1    3.3459    2.3455    2.3455
   2    2.3455    3.3459    2.3455
   3    2.3455    2.3455    3.3459

screened Coulomb repulsion U_ijji between MLWFs:
        1         2         3
   1    3.3459    0.4281    0.4281
   2    0.4281    3.3459    0.4281
   3    0.4281    0.4281    3.3459

screened Coulomb repulsion U_ijij between MLWFs:
        1         2         3
   1    3.3459    0.4281    0.4281
   2    0.4281    3.3459    0.4281
   3    0.4281    0.4281    3.3459

averaged interaction parameter
screened Hubbard U =    3.3459    0.0000
screened Hubbard u =    2.3455    0.0000
screened Hubbard J =    0.4281   -0.0000

The full interaction matrix is written to UIJKL.

Mind: The frequency point can be set by OMEGAMAX in the INCAR.

For instance to evaluate the cRPA interaction matrix at eV, add

 OMEGAMAX = 10

to the INCAR and restart VASP. In contrast, adding following two lines to the INCAR

 OMEGAMAX = 10 
 NOMEGAR = 0 

tells VASP to calculate the interaction on the imaginary frequency axis at . This can be used to evaluate at a specific Matsubara frequency point.

In addition, the bare Coulomb interaction matrix is calculated for a high VCUTOFF and low energy cutoff ENCUTGW and written in that order to the OUTCAR file. Look for the lines similar to:

spin components:  1  1
 
bare Coulomb repulsion V_iijj between MLWFs:
        1         2         3
   1   16.3485   15.0984   15.0984
   2   15.0984   16.3485   15.0984
   3   15.0984   15.0984   16.3485
 
bare Coulomb repulsion V_ijji between MLWFs:
        1         2         3
   1   16.3485    0.5351    0.5351
   2    0.5351   16.3485    0.5351
   3    0.5351    0.5351   16.3485
 
bare Coulomb repulsion V_ijij between MLWFs:
        1         2         3
   1   16.3485    0.5351    0.5351
   2    0.5351   16.3485    0.5351
   3    0.5351    0.5351   16.3485

averaged bare interaction
bare Hubbard U =   16.3485   -0.0000
bare Hubbard u =   15.0984   -0.0000
bare Hubbard J =    0.5351    0.0000

Similar to the effectively screened interaction the full output is written to VIJKL.

cRPA calculation on Matsubara axis

Mind: Available as of VASP.6.5.2.

Note that the same frequency grid is used as for ALGO=RPA (RPA correlation energy calculation) and can not be changed directly. To calculate the cRPA interaction for a set of automatically chosen imaginary frequency points use once again the PBE wavefunction as input

cp WAVECAR.PBE WAVECAR
cp WAVEDER.PBE WAVEDER

Currently, this step requires the WANPROJ file from previous step, no wannier90.win file is necessary. You can also, delete WANPROJ and define a wannier projection as in the previous step in the INCAR.

Select the space-time cRPA algorithm with following file:

SYSTEM = SrVO3             # system name
LFINITE_TEMPERATURE = T    # use finite temperature formalism 
ISMEAR = -1                # required for finite temperature algorithm
SIGMA = 0.1                # electron temperature in eV (1 eV ~ 11000 K)
ALGO = CRPAR               # Switch on CRPA on imaginary axis
NBANDS = 96                # CRPA needs many empty states
PRECFOCK = Fast            # fast mode for FFTs
NTARGET_STATES = 1 2 3     # exclude wannier states 1 - 3 in screening
NCRPA_BANDS = 21 22 23     # remove bands 21-23 in screening, currently required for space-time algo
NOMEGA = 8                 # use 8 imaginary frequency points
NOMEGA_DUMP = 0            # write WFULLxxxx.tmp files at omega=0, used for off-centre Coulomb integrals in next step


Run VASP and make a copy of the output file

cp OUTCAR OUTCAR.CRPAR

After a successful run, the interaction values at NOMEGA+1 frequencies are written to the OUTCAR file, where the first point is always :

 spin components:  1  1, frequency:    0.0000    0.0000

screened Coulomb repulsion U_iijj between MLWFs:
        1         2         3
   1    3.3450    2.3447    2.3447
   2    2.3447    3.3450    2.3447
   3    2.3447    2.3447    3.3450

...

 spin components:  1  1, frequency:    0.0000  109.6955

screened Coulomb repulsion U_iijj between MLWFs:
        1         2         3
   1   15.2510   14.0759   14.0759
   2   14.0759   15.2510   14.0759
   3   14.0759   14.0759   15.2510

The complete matrix at zero frequency is also written to UIJKL, while the result at the first frequency point of the minimax grid[1] is found in UIJKL.1 and so on.

Optional: Analytic continuation

To obtain the effective interaction on the real frequency axis from the imaginary axis (stored in UIJKL.*) following python code can be used in a jupyter notebook:

import numpy as np 
from scipy.interpolate import AAA
import matplotlib.pyplot as plt
# results stored in NOMEGA dimensional array 
nomega=24
u = np.zeros( nomega, dtype='complex' )  
# one-site indices 
idx=[0,40,80 ]
# store one-site bare interaction
v = np.sum( np.loadtxt('VIJKL').T[4][idx] )/len(idx)
for i in range(nomega):
    raw = np.loadtxt( 'UIJKL.{omega:d}'.format(omega=i+1) ) 
    u[i] = np.sum( raw.T[4][idx] + 1j * raw.T[5][idx] ) / len(idx)
# extract omega points 
!grep "omega =" UIJKL.{?,??} | awk '{print $5}' > omegas.dat
omegas=np.loadtxt( 'omegas.dat' )*1j
# use AAA algorithm for analytic continuation 
u_cont = AAA(omegas,u )
# plot real part of U and bare interaction V 
z = np.linspace( 0, 200, num=1000)
fig, ax = plt.subplots()
ax.plot( z, u_cont(z).real, '-', color='r', label='U')
ax.axhline(y=v, color='b', linestyle='-', label='V')
ax.legend()
# add low-frequency regime as an inset 
zlow=np.linspace( 0, 20, num=1000)
inset_ax = ax.inset_axes([0.35, 0.1, 0.6, 0.6])  # [left, bottom, width, height]
inset_ax.plot(zlow, u_cont(zlow), color='red')
plt.xlabel('$\omega$ [eV]')
plt.show()

Tip: Increase NOMEGA points to resolve more details on the real frequency axis.

Off-centre Coulomb integrals

Every cRPA job writes the effectively screened Coulomb kernel (in reciprocal space) at zero frequency to WFULLxxxx.tmp files. These files can be read in and off-centre Coulomb integrals can be evaluated using following input:

ALGO = 2E4WA                           # Compute off-centre Coulomb integrals
ISMEAR = -1                            # Fermi smearing             
SIGMA = 0.1                            # electronic temperature
NBANDS = 96                            # use same number of bands as stored in WAVECAR
ALGO = 2E4WA                           # Compute off-centre Coulomb integrals
PRECFOCK = Fast                        # fast mode for FFTs
NTARGET_STATES = 1 2 3                 # Wannier states for which Coulomb integrals are evaluated

The bare off-centre Coulomb integrals are written to VRijkl, while the effectively screened ones are found in URijkl:

# File generated by VASP contains Coulomb matrix elements
# U_ijkl = [ij|kl] 
#  I   J   K   L          RE(U_IJKL)          IM(U_IJKL)
# R:    1  0.000000  0.000000  0.000000
   1   1   1   1        3.3450226866        0.0000000000
   2   1   1   1        0.0000058776        0.0000006717
   3   1   1   1        0.0000026927       -0.0000003292
...
   3   3   3   3        3.3450230976        0.0000000000
# R:    2  0.000000  0.000000  1.000000
   1   1   1   1        0.7321605022       -0.0001554484
   2   1   1   1        0.0000021144        0.0000002295
...
Mind: Available as of VASP.6.5.2.

Downloads

CRPA_of_SrVO3.zip

Back to the main page.