Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalization of the Bloch condition (set LNONCOLLINEAR=.TRUE. and LSPIRAL=.TRUE.):
![{\displaystyle
\left[ \begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r) \\
\Psi^{\downarrow}_{\bf k}(\bf r) \end{array} \right] = \left(
\begin{array}{cc}
e^{-i\bf q \cdot \bf R / 2} & 0\\
0 & e^{+i\bf q \cdot \bf R / 2} \end{array}\right) \left[
\begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r-R) \\
\Psi^{\downarrow}_{\bf k}(\bf r-R) \end{array} \right],
}](/wiki/index.php?title=Special:MathShowImage&hash=d87ea979867db8fcc85d3f002be8e039&mode=mathml)
i.e., from one unit cell to the next the up- and down-spinors pick up an additional phase factor of
and
, respectively,
where R is a lattice vector of the crystalline lattice, and q is the so-called spin-spiral propagation vector.
The spin-spiral propagation vector is commonly chosen to lie within the first Brillouin zone of the reciprocal space lattice, and has to be specified by means of the QSPIRAL-tag.
The generalized Bloch condition above gives rise to the following behavior of the magnetization density:
![{\displaystyle
{\bf m} ({\bf r} + {\bf R})= \left(
\begin{array}{c}
m_x({\bf r}) \cos({\bf q} \cdot {\bf R}) - m_y({\bf r}) \sin({\bf q} \cdot {\bf R}) \\
m_x({\bf r}) \sin({\bf q} \cdot {\bf R}) + m_y({\bf r}) \cos({\bf q} \cdot {\bf R}) \\
m_z({\bf r})
\end{array}
\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=34d77f652ba2f6e0f299ebf06489f262&mode=mathml)
This is schematically depicted in the figure at the top of this page:
the components of the magnization in the xy-plane rotate about the spin-spiral propagation vector q.
Basis set considerations
The generalized Bloch condition redefines the Bloch functions as follows:
![{\displaystyle
\Psi^{\uparrow}_{\bf k}(\bf r) = \sum _{\bf G} \rm
C^{\uparrow}_{\bf k \bf G} e^{i(\bf k + \bf G -\frac{\bf q}{2})\cdot \bf r}
}](/wiki/index.php?title=Special:MathShowImage&hash=76847c80b4897132329d41ec0ddd7477&mode=mathml)
![{\displaystyle
\Psi^{\downarrow}_{\bf k}(\bf r)
= \sum _{\bf G} \rm C^{\downarrow}_{\bf k \bf G} e^{i(\bf k + \bf
G +\frac{\bf q}{2})\cdot \bf r}
}](/wiki/index.php?title=Special:MathShowImage&hash=b887d33a93c131a7e812c6b2d27ca440&mode=mathml)
This changes the Hamiltonian only minimally:
![{\displaystyle
\left( \begin{array}{cc}
H^{\uparrow\uparrow} & V^{\uparrow\downarrow}_{\rm xc} \\
V^{\downarrow\uparrow}_{\rm xc} & H^{\downarrow\downarrow} \end{array}\right)
\rightarrow
\left( \begin{array}{cc}
H^{\uparrow\uparrow} & V^{\uparrow\downarrow}_{\rm xc} e^{-i\bf q \cdot \bf r} \\
V^{\downarrow\uparrow}_{\rm xc}e^{+i\bf q \cdot \bf r} & H^{\downarrow\downarrow} \end{array}\right),
}](/wiki/index.php?title=Special:MathShowImage&hash=62e152b3faace87061f381845058ed90&mode=mathml)
where in
and
the kinetic energy of a plane wave component changes to:
![{\displaystyle
H^{\uparrow\uparrow}:\qquad |{\bf k} + {\bf G}|^2 \rightarrow |{\bf k} + {\bf G} - {\bf q} /2|^2
}](/wiki/index.php?title=Special:MathShowImage&hash=1d6d9ca916c9751c62dab55d4960085f&mode=mathml)
![{\displaystyle
H^{\downarrow\downarrow}:\qquad |{\bf k} + {\bf G}|^2 \rightarrow |{\bf k} + {\bf G} + {\bf q} /2|^2
}](/wiki/index.php?title=Special:MathShowImage&hash=90905bc6dc455eae237a82cc81da3fa4&mode=mathml)
In the case of spin-spiral calculations the cutoff energy of the basis set of the individual spinor components is specified by means of the ENINI-tag.
Additionally one needs to set ENMAX appropriately:
ENMAX needs to be chosen larger than ENINI, and large enough so that the plane wave components of both the up-spinors as well as the components of the down-spinor all have a kinetic energy smaller than ENMAX.
This is the case when:
![{\displaystyle
\mathtt{ENMAX} \geq \frac{\hbar^2}{2m}\left( G_{\rm ini} + |q| \right)^2
}](/wiki/index.php?title=Special:MathShowImage&hash=fb80774a5971026f6530eff9a97acae4&mode=mathml)
where
![{\displaystyle
G_{\rm ini}=\sqrt{\frac{2m}{\hbar^2}\mathtt{ENINI}}
}](/wiki/index.php?title=Special:MathShowImage&hash=6ea38d4227187d05dabc5570a567d70e&mode=mathml)
In most cases it is more than sufficient to set ENMAX=ENINI+100.
To judge whether ENMAX is chosen large enough one will always get a warning at runtime, e.g.
-----------------------------------------------------------------------------
| |
| W W AA RRRRR N N II N N GGGG !!! |
| W W A A R R NN N II NN N G G !!! |
| W W A A R R N N N II N N N G !!! |
| W WW W AAAAAA RRRRR N N N II N N N G GGG ! |
| WW WW A A R R N NN II N NN G G |
| W W A A R R N N II N N GGGG !!! |
| |
| To represent the spin spiral you requested, with a kinetic |
| energy cutoff of ENINI= 300.00 eV, choose ENMAX > 331.21 eV |
| Currently ENMAX= 400.00 eV |
| |
-----------------------------------------------------------------------------
Symmetry
Generally the spin-spiral lowers the symmetry of the system.
At present