The formalism of the Bethe-Salpeter equation (BSE) allows for accounting the electron-hole interaction in the polarizability, which make the BSE the state of the art approach for calculating the absorption spectra in solids.
Theory
BSE
In the BSE, the excitation energies correspond to the eigenvalues
of the following linear problem
![{\displaystyle
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^* & \mathbf{A}^*
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_\lambda \\
\mathbf{Y}_\lambda
\end{array}\right)=\omega_\lambda\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_\lambda \\
\mathbf{Y}_\lambda
\end{array}\right)~.
}](/wiki/index.php?title=Special:MathShowImage&hash=c3c22f860e51e0743a085e08b3fb9cb4&mode=mathml)
The matrices
and
describe the resonant and anti-resonant transitions between the occupied
and unoccupied
states
![{\displaystyle
A_{vc}^{v'c'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'} + \langle cv'|V|vc'\rangle - \langle cv'|W|c'v\rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=381bf213f829074bd2457667b599e615&mode=mathml)
The energies and orbitals of these states are usually obtained in a
calculation, but DFT and Hybrid functional calculations can be used as well.
The electron-electron interaction and electron-hole interaction are described via the bare Coulomb
and the screened potential
.
The coupling between resonant and anti-resonant terms is described via terms
and
![{\displaystyle
B_{vc}^{v'c'} = \langle vv'|V|cc'\rangle - \langle vv'|W|c'c\rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=6a7181ff9309c8e11e073defaa493b10&mode=mathml)
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian.
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e.,
and
.
Hence, the TDA reduces the BSE to a Hermitian problem
![{\displaystyle
AX_\lambda=\omega_\lambda X_\lambda~.
}](/wiki/index.php?title=Special:MathShowImage&hash=5ea774549184d69cbe3483e61bf1127d&mode=mathml)
In reciprocal space, the matrix
is written as
![{\displaystyle
A_{vc\mathbf{k}}^{v'c'\mathbf{k}'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'}\delta_{\mathbf{kk}'}+
\frac{2}{\Omega}\sum_{\mathbf{G}\neq0}\bar{V}_\mathbf{G}(\mathbf{q})\langle c\mathbf{k}|e^{i\mathbf{Gr}}|v\mathbf{k}\rangle\langle v'\mathbf{k}'|e^{-i\mathbf{Gr}}|c'\mathbf{k}'\rangle
-\frac{2}{\Omega}\sum_{\mathbf{G,G}'}W_{\mathbf{G,G}'}(\mathbf{q},\omega)\delta_{\mathbf{q,k-k}'}
\langle c\mathbf{k}|e^{i(\mathbf{q+G})}|c'\mathbf{k}'\rangle
\langle v'\mathbf{k}'|e^{-i(\mathbf{q+G})}|v\mathbf{k}\rangle,
}](/wiki/index.php?title=Special:MathShowImage&hash=5bbbc090c9c8d0efc68b8729ab42b857&mode=mathml)
where
is the cell volume,
is the bare Coulomb potential without the long-range part
![{\displaystyle
\bar{V}_{\mathbf{G}}(\mathbf{q})=\begin{cases}
0 & \text { if } G=0 \\
V_{\mathbf{G}}(\mathbf{q})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} & \text { else }
\end{cases}~,
}](/wiki/index.php?title=Special:MathShowImage&hash=ef5f790f72a3be9570612b20108a88bc&mode=mathml)
and the screened Coulomb potential
Here, the dielectric function
describes the screening in
within the random-phase approximation (RPA)
![{\displaystyle
\epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} \chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{\mathrm{RPA}}(\mathbf{q}, \omega).
}](/wiki/index.php?title=Special:MathShowImage&hash=a8eee543e225a70d48980b9c159c19dd&mode=mathml)
Although the dielectric function is frequency-dependent, the static approximation
is considered a standard for practical BSE calculations.
The macroscopic dielectric which account for the excitonic effects is found via eigenvalues
and eigenvectors
of the BSE
![{\displaystyle
\epsilon_M(\mathbf{q},\omega)=
1+\lim_{\mathbf{q}\rightarrow 0}v(q)\sum_{\lambda}
\left|\sum_{c,v,k}\langle c\mathbf{k}|e^{i\mathbf{qr}}|v\mathbf{k}\rangle X_\lambda^{cv\mathbf{k}}\right|^2
\times
\left(\frac{1}{\omega_\lambda - \omega - i\delta} + \frac{1}{\omega_\lambda+\omega + i\delta}\right)~.
}](/wiki/index.php?title=Special:MathShowImage&hash=a49e18967e76d29ad36218d238c15b01&mode=mathml)
How to
References
Pages in category "Bethe-Salpeter equations"
The following 25 pages are in this category, out of 25 total.