The bare Coulomb operator
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{1}{\vert\mathbf{r}-\mathbf{r}'\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=8b0325f544118304d8ed193139587e13&mode=mathml)
in the unscreened HF exchange has a representation in the reciprocal space that is given by
![{\displaystyle
V(q)=\frac{4\pi}{q^2}
}](/wiki/index.php?title=Special:MathShowImage&hash=a4815ba908e5cd91f3816a318aecb501&mode=mathml)
It has a singularity at
, and to alleviate this issue and to improve the convergence of the exact exchange with respect to the supercell size (or the k-point mesh density) different methods have been proposed: the auxiliary function methods[1], probe-charge Ewald [2] (HFALPHA), and Coulomb truncation methods[3] (HFRCUT).
These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel in the limit of large supercell sizes. These methods are described below.
Probe-charge Ewald method
Auxiliary function methods
Truncation methods
In this method the bare Coulomb operator
is truncated by multiplying it by the step function
, and in the reciprocal this leads to
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}\left(1-\cos(q R_{\text{c}})\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=69db615ca9bc9f672b03cd327512246a&mode=mathml)
whose value at
is finite and is given by
. The screened Coulomb operators
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{e^{-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=7413f37b3842d69619ec8c109ecf01ca&mode=mathml)
and
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{\text{erfc}\left({-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}\right)}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=419932d7d2c83f2a1c6e53f25e44656a&mode=mathml)
have representations in the reciprocal space that are given by
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}+\lambda^{2}}
}](/wiki/index.php?title=Special:MathShowImage&hash=9ef279f2501bfff7cc0e6e9ac964c7cb&mode=mathml)
and
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}\left(1-e^{-q^{2}/\left(4\lambda^2\right)}\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=67c4a9587d66df53fe21b7d678d551b1&mode=mathml)
respectively. Thus, the screened potentials have no singularity at
. Nevertheless, it is still beneficial for accelerating the convergence with respect to the number of k-points to multiply these screened operators by
, which in the reciprocal space gives
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}+\lambda^{2}}
\left(
1-e^{-\lambda R_{\text{c}}}\left(\frac{\lambda}{q}
\sin\left(qR_{\text{c}}\right) +
\cos\left(qR_{\text{c}}\right)\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=1cae39bc769c012e6775bd7a04beb033&mode=mathml)
and
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}
\left(
1-\cos(qR_{\text{c}})\text{erfc}\left(\lambda R_{\text{c}}\right) -
e^{-q^{2}/\left(4\lambda^2\right)}
\Re\left({\text{erf}\left(\lambda R_{\text{c}} +
\text{i}\frac{q}{2\lambda}\right)}\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=d3220bea16767c232a9c5174a65dacf2&mode=mathml)
respectively, with the following values at
:
![{\displaystyle
V(q=0)=\frac{4\pi}{\lambda^{2}}\left(1-e^{-\lambda R_{\text{c}}}\left(\lambda R_{\text{c}} + 1\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=18deff37ea912f324711c782747e213f&mode=mathml)
and
![{\displaystyle
V(q=0)=2\pi\left(R_{\text{c}}^{2}\text{erfc}(\lambda R_{\text{c}}) -
\frac{R_{\text{c}}e^{-\lambda^{2}R_{\text{c}}^{2}}}{\sqrt{\pi}\lambda} +
\frac{\text{erf}(\lambda R_{\text{c}})}{2\lambda^{2}}\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=81880b8ccb3f15618287c0c05ecee4ad&mode=mathml)
Related tags and articles
HFRCUT,
Hybrid_functionals: formalism,
Downsampling_of_the_Hartree-Fock_operator
References