The Helmholtz free energy (
) of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,
) as follows
![{\displaystyle
A_{1} = A_{0,\mathbf{x}} + \Delta A_{0,\mathbf{x}\rightarrow 1}
}](/wiki/index.php?title=Special:MathShowImage&hash=c10255aea454b2c59027dcf696eb3606&mode=mathml)
where
is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
![{\displaystyle
\Delta A_{0,\mathbf{x}\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_{0,\mathbf{x}} \rangle_\lambda
}](/wiki/index.php?title=Special:MathShowImage&hash=72ead17d52ad0559dd40254d399b9548&mode=mathml)
with
being the potential energy of system
,
is a coupling constant and
is the NVT ensemble average of the system driven by the Hamiltonian
![{\displaystyle
\mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_{0,\mathbf{x}}
}](/wiki/index.php?title=Special:MathShowImage&hash=5d8589083fb15b7ab4774ba9a3c1ccb2&mode=mathml)
Free energy of harmonic reference system within the quasi-classical theory writes
![{\displaystyle
A_{0,\mathbf{x}} = A_\mathrm{el}(\mathbf{x}_0) - k_\mathrm{B} T \sum_{i = 1}^{N_\mathrm{vib}} \ln \frac{k_\mathrm{B} T}{\hbar \omega_i}
}](/wiki/index.php?title=Special:MathShowImage&hash=d1bdab084e9d115be7b9ce6589cb24b1&mode=mathml)
with the electronic free energy
for the
configuration corresponding to the potential energy minimum with the
atomic position vector
,
the number of vibrational degrees of freedom
, and the angular frequency
of vibrational mode
obtained using the Hesse matrix
.
The
![{\displaystyle
V_{0,\mathbf{x}}(\mathbf{x}) = V_{0,\mathbf{x}}(\mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \underline{\mathbf{H}}^\mathbf{x} (\mathbf{x} - \mathbf{x}_0)
}](/wiki/index.php?title=Special:MathShowImage&hash=62c959b57d58e46a53c75a5272980612&mode=mathml)