The bare Coulomb operator
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{1}{\vert\mathbf{r}-\mathbf{r}'\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=8b0325f544118304d8ed193139587e13&mode=mathml)
in the unscreened HF exchange has a representation in the reciprocal space that is given by
![{\displaystyle
V(q)=\frac{4\pi}{q^2}
}](/wiki/index.php?title=Special:MathShowImage&hash=a4815ba908e5cd91f3816a318aecb501&mode=mathml)
It has an (integrable) singularity at
that leads to a very slow convergence of the results with respect to the cell size or number of k points. In order to alleviate this issue different methods have been proposed: the auxiliary function [1], probe-charge Ewald [2] (HFALPHA), and Coulomb truncation[3] methods (selected with HFRCUT). These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel in the limit of large supercell sizes.
These methods can also be applied to the Thomas-Fermi, and error function, screened Coulomb operators given by
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{e^{-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=7413f37b3842d69619ec8c109ecf01ca&mode=mathml)
and
![{\displaystyle
V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{\text{erfc}\left({-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}\right)}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert}
}](/wiki/index.php?title=Special:MathShowImage&hash=419932d7d2c83f2a1c6e53f25e44656a&mode=mathml)
respectively, whose representations in the reciprocal space are given by
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}+\lambda^{2}}
}](/wiki/index.php?title=Special:MathShowImage&hash=9ef279f2501bfff7cc0e6e9ac964c7cb&mode=mathml)
and
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}\left(1-e^{-q^{2}/\left(4\lambda^2\right)}\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=67c4a9587d66df53fe21b7d678d551b1&mode=mathml)
respectively.
Auxiliary function
In this approach an auxiliary periodic function
with the same
divergence as the Coulomb potential in reciprocal space is subtracted in the k points used to integrate the Hartree-Fock energy, thus regularizing the integral[1]. This function is chosen such that it has a closed analytical expression for its integral[1] or the integral is evaluated numerically[4]. This approach is currently not implemented in VASP, instead, the probe-charge Ewald method is used.
Probe-charge Ewald
A similar approach to the auxiliary function method described above is the probe-charge Ewald method [2]. In this case, the auxiliary function
is chosen to have the form of the Coulomb kernel times a Gaussian function
with a width
(HFALPHA) comparable to the Brillouin zone diameter.
This function is used to regularize the Coulomb integral that is evaluated in the regular k point grid with the divergent part being evaluated by analytical integration of the Coulomb kernel (see eq. 29 in ref. [2]).
The value of the integral of the bare Coulomb potential is (see eq. 31 in ref. [2])
![{\displaystyle
\begin{aligned}
\frac{1}{2\pi^2} \int \frac{4\pi}{\mathbf{|q|}^2} e^{-\alpha\mathbf{|q|}^2} d\mathbf{q}=
\frac{2}{\pi} \int \frac{1}{q^2} e^{-\alpha q^2} q^2 dq =
\frac{2}{\pi} \int e^{-\alpha q^2} dq= \frac{1}{\sqrt{\pi \alpha}}
\end{aligned}
}](/wiki/index.php?title=Special:MathShowImage&hash=78833f415ab523cbbff4df0d84bde83f&mode=mathml)
for the Thomas-Fermi and error function screened Coulomb kernels we have
![{\displaystyle
\begin{aligned}
\frac{1}{2\pi^2} \int \frac{4\pi}{\mathbf{|q|}^2+\lambda^2} e^{-\alpha\mathbf{|q|}^2} d\mathbf{q}=
\frac{2} {\pi} \int \frac{q^2}{q^2+\lambda^2} e^{-\alpha q^2} q^2 dq =
-\lambda e^{\alpha \lambda^2} \text{erfc}({\lambda \sqrt{\alpha}}) + \frac{1}{\sqrt{\pi \alpha}}
\end{aligned}
}](/wiki/index.php?title=Special:MathShowImage&hash=9503e5bc71a73a78973a77eb740709d1&mode=mathml)
and
![{\displaystyle
\begin{aligned}
\frac{1}{2\pi^2} \int \frac{4\pi}{\mathbf{q}^2}
\left(
1-e^{-\mathbf{|q|}^2/(4\lambda^2)}
\right) e^{-
\alpha\mathbf{|q|}^2} d\mathbf{q}=
\frac{2}{\pi} \int \frac{1}{q^2}
\left(
1-e^{-q^2/(4\lambda^2)}
\right) e^{-\alpha q^2} q^2 dq =
\frac{1}{\sqrt{\pi \alpha}} -
\frac{1}{\sqrt{\pi \left(\alpha+\frac{1}{4\lambda^2}\right)}}
\end{aligned}
}](/wiki/index.php?title=Special:MathShowImage&hash=74e02db25a7ff518791ff9b9ea6c0875&mode=mathml)
respectively.
Spherical truncation
In this method[3] the bare Coulomb operator
is spherically truncated by multiplying it by the step function
, and in the reciprocal this leads to
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}\left(1-\cos(q R_{\text{c}})\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=69db615ca9bc9f672b03cd327512246a&mode=mathml)
whose value at
is finite and is given by
, where the truncation radius
(HFRCUT) is by default chosen as
with
being the number of
-points in the full Brillouin zone.
The screened potentials have no singularity at
. Nevertheless, it is still beneficial for accelerating the convergence with respect to the number of k points to multiply these screened operators by
, which in the reciprocal space gives
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}+\lambda^{2}}
\left(
1-e^{-\lambda R_{\text{c}}}\left(\frac{\lambda}{q}
\sin\left(qR_{\text{c}}\right) +
\cos\left(qR_{\text{c}}\right)\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=1cae39bc769c012e6775bd7a04beb033&mode=mathml)
and
![{\displaystyle
V(q)=\frac{4\pi}{q^{2}}
\left(
1-\cos(qR_{\text{c}})\text{erfc}\left(\lambda R_{\text{c}}\right) -
e^{-q^{2}/\left(4\lambda^2\right)}
\Re\left({\text{erf}\left(\lambda R_{\text{c}} +
\text{i}\frac{q}{2\lambda}\right)}\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=d3220bea16767c232a9c5174a65dacf2&mode=mathml)
respectively, with the following values at
:
![{\displaystyle
V(q=0)=\frac{4\pi}{\lambda^{2}}\left(1-e^{-\lambda R_{\text{c}}}\left(\lambda R_{\text{c}} + 1\right)\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=18deff37ea912f324711c782747e213f&mode=mathml)
and
![{\displaystyle
V(q=0)=2\pi\left(R_{\text{c}}^{2}\text{erfc}(\lambda R_{\text{c}}) -
\frac{R_{\text{c}}e^{-\lambda^{2}R_{\text{c}}^{2}}}{\sqrt{\pi}\lambda} +
\frac{\text{erf}(\lambda R_{\text{c}})}{2\lambda^{2}}\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=81880b8ccb3f15618287c0c05ecee4ad&mode=mathml)
Note that the spherical truncation method described above works very well in the case of 3D systems. However, it is not recommended for systems with a lower dimensionality[5]. For such systems, the approach proposed in ref. [5] (not implemented in VASP) is more adapted since the truncation is done according to the Wigner-Seitz cell and therefore more general.
Related tags and articles
HFRCUT,
FOCKCORR,
Hybrid functionals: formalism,
Downsampling of the Hartree-Fock operator
References
- ↑ a b c F. Gygi and A. Baldereschi, Phys. Rev. B 34, 4405(R) (1986).
- ↑ a b c d S. Massidda, M. Posternak, and A. Baldereschi, Phys. Rev. B 48, 5058 (1993).
- ↑ a b J. Spencer and A. Alavi, Phys. Phys. Rev. B 77, 193110 (2008).
- ↑ P. Carrier, S. Rohra, and A. Görling, Phys. Rev. B 75, 205126 (2007).
- ↑ a b R. Sundararaman and T. A. Arias, Phys. Rev. B 87, 165122 (2013).