To understand them we start by looking at the Taylor expansion of the total energy (
) around the set of equilibrium positions of the nuclei (
)
![{\displaystyle
E(\{\mathbf{R}\})=
E(\{\mathbf{R}^0\})+
\sum_{I\alpha} \frac{\partial E(\{\mathbf{R^0}\})}{\partial R_{I\alpha}} (R_{I\alpha}-R^0_{I\alpha})+
\sum_{I\alpha J\beta} \frac{\partial E(\{\mathbf{R}^0\})}{\partial R_{I\alpha} \partial R_{J\beta}}
(R_{I\alpha}-R^0_{I\alpha}) (R_{J\beta}-R^0_{J\beta})+
\mathcal{O}(\mathbf{R}^3),
}](/wiki/index.php?title=Special:MathShowImage&hash=4aacc2b296aa31e56d30c921993625d6&mode=mathml)
where
the positions of the nuclei.
The first term in the expansion corresponds to the forces
,
and the second to the second-order force-constants
![{\displaystyle
\Phi_{I\alpha J\beta} (\{\mathbf{R}^0\}) =
\left. \frac{\partial E(\{\mathbf{R}\})}{\partial R_{I\alpha} \partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}}
=
- \left. \frac{\partial F_{I\alpha}(\{\mathbf{R}\})}{\partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}}.
}](/wiki/index.php?title=Special:MathShowImage&hash=04bbbdf85736c6fdc93dc01a452dc63c&mode=mathml)
We can define a variable that corresponds to the displacement of the atoms with respect to the equilibrium position
which leads to
![{\displaystyle
E(\{\mathbf{R}\})=
E(\{\mathbf{R}^0\})+
\sum_{I\alpha} -F_{I\alpha} (\{\mathbf{R}^0\}) u_{I\alpha}+
\sum_{I\alpha J\beta} \Phi_{I\alpha J\beta} (\{\mathbf{R}^0\}) u_{I\alpha} u_{J\beta} +
\mathcal{O}(\mathbf{R}^3)
}](/wiki/index.php?title=Special:MathShowImage&hash=4710fd02e6e1868d5258a263ca794a43&mode=mathml)
If we take the system to be in equilibrium, the forces on the atoms are zero and then the Hamiltonian of the system is
![{\displaystyle
H =
\frac{1}{2} \sum_{I\alpha} M_I \dot{u}^2_{I\alpha} +
\frac{1}{2} \sum_{I\alpha J\beta} \Phi_{I\alpha J\beta} u_{I\alpha} u_{J\beta},
}](/wiki/index.php?title=Special:MathShowImage&hash=336a97ab68c2423222e5845c807eed79&mode=mathml)
and the equation of motion
![{\displaystyle
M_I \ddot{u}^2_{I\alpha} = -
\Phi_{I\alpha J\beta} u_{J\beta}
}](/wiki/index.php?title=Special:MathShowImage&hash=8014b531a12ee3b24438cb4298f2e73e&mode=mathml)
Using the following ansatz
![{\displaystyle
\mathbf{u}^\mu_{I\alpha}(\mathbf{q},t) = \frac{1}{2} \frac{1}{\sqrt{M_I}}
\left\{
A^\mu(\mathbf{q}) \xi^{\mu }_{I\alpha}(\mathbf{q})
e^{ i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]}+
A^{\mu*}(\mathbf{q}) \xi^{\mu*}_{I\alpha}(\mathbf{q})
e^{-i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]}
\right\}
}](/wiki/index.php?title=Special:MathShowImage&hash=b1e726d410174f72ba8bf3bfd845ff28&mode=mathml)
where
are the phonon mode eigenvectors.
Replacing we obtain the following eigenvalue problem
![{\displaystyle
\sum_{J\beta} D_{I\alpha J\beta} (\mathbf{q})
\xi^{\mu }_{J\beta}(\mathbf{q}) =
\omega^\mu(\mathbf{q})^2 \xi^{\mu }_{I\alpha}(\mathbf{q})
}](/wiki/index.php?title=Special:MathShowImage&hash=1e3feec89de3b4800e1b9f56abafdc9e&mode=mathml)
with
![{\displaystyle
D_{I\alpha J\beta} (\mathbf{q}) =
\frac{1}{\sqrt{M_I M_J}} \Phi_{I\alpha J\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_J-\mathbf{R}_I)}
}](/wiki/index.php?title=Special:MathShowImage&hash=44f61d79f763a7ef2b7e4178b60515bf&mode=mathml)
the dynamical matrix in the harmonic approximation.
Now by solving the eigenvalue problem above we can obtain the phonon modes
and frequencies
at any arbitrary q point.
Finite differences
The second-order force constants are computed using finite differences of the forces when each ion is displaced in each independent direction.
This is done by
creating systems with finite ionic displacement of atom
in direction
with magnitude
,
computing the orbitals
and the forces for these systems.
The second-order force constants are then computed using
![{\displaystyle
\Phi_{I\alpha J\beta}=
\frac{\partial^2E}{\partial u_{I\alpha} \partial u_{J\beta}}=
-\frac{\partial F_{I\alpha}}{\partial u_{J\beta}}
\approx
-\frac{
\left(
\mathbf{F}[\{\psi^{u_{J\beta}}_{\lambda/2}\}]-
\mathbf{F}[\{\psi^{u_{J\beta}}_{-\lambda/2}\}]
\right)_{I\alpha}}{\lambda},
\quad {I=1,..,N_\text{atoms}}
\quad {J=1,..,N_\text{atoms}}
\quad {\alpha=x,y,z}
\quad {\beta=x,y,z}
}](/wiki/index.php?title=Special:MathShowImage&hash=38ba580c032d615278bb432f68fb69bb&mode=mathml)
where
corresponds to the displacement of atom
in the cartesian direction
and
retrieves the set of forces acting on all the ions given the
orbitals.
Similarly, the internal strain tensor is
![{\displaystyle
\Xi_{I\alpha l}=\frac{\partial^2 E}{\partial u_{I\alpha} \partial \eta_l}=
\frac{\partial \sigma_l}{\partial u_{I\alpha}}
\approx
\frac{
\left(
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{\lambda/2}\}]-
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{-\lambda/2}\}]
\right)_l
}{\lambda}
,\qquad {l=xx, yy, zz, xy, yz, zx} \quad {\alpha=x,y,z} \quad {J=1,..,N_\text{atoms}}
}](/wiki/index.php?title=Special:MathShowImage&hash=29a0d61f3abb12ba398dcaddef81ebc8&mode=mathml)
where
computes the strain tensor given the
orbitals.
Density functional perturbation theory
Density-functional-perturbation theory provides a way to compute the second-order linear response to ionic displacement, strain, and electric fields. The equations are derived as follows.
In density-functional theory, we solve the Kohn-Sham (KS) equations
![{\displaystyle
H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle=
e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle,
}](/wiki/index.php?title=Special:MathShowImage&hash=4b8755bfb2c1c8878595281ee75ca2ba&mode=mathml)
where
is the DFT Hamiltonian,
is the overlap operator and,
and
are the KS eigenstates.
Taking the derivative with respect to the ionic displacements
, we obtain the Sternheimer equations
![{\displaystyle
\left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right]
| \partial_{u_{I\alpha}}\psi_{n\mathbf{k}} \rangle
=
-\partial_{u_{I\alpha}} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right]
| \psi_{n\mathbf{k}} \rangle
}](/wiki/index.php?title=Special:MathShowImage&hash=d9fcc3d4366c42dbd0b2a9874c61ac3e&mode=mathml)
Once the derivative of the KS orbitals is computed from the Sternheimer equations, we can write
![{\displaystyle
| \psi^{u_{I\alpha}}_\lambda \rangle =
| \psi \rangle +
\lambda | \partial_{u_{I\alpha}}\psi \rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=7bbb0baabc1d86493b590eb16bafa7e4&mode=mathml)
The second-order response to ionic displacement, i.e., the force constants or Hessian matrix
can be computed using the same equation used in the finite differences case
![{\displaystyle
\Phi_{I\alpha J\beta}=
\frac{\partial^2E}{\partial u_{I\alpha} \partial u_{J\beta}}=
-\frac{\partial F_{I\alpha}}{\partial u_{J\beta}}
\approx
-\frac{
\left(
\mathbf{F}[\{\psi^{u_{J\beta}}_{\lambda/2}\}]-
\mathbf{F}[\{\psi^{u_{J\beta}}_{-\lambda/2}\}]
\right)_{I\alpha}}{\lambda},
\quad {I=1,..,N_\text{atoms}}
\quad {J=1,..,N_\text{atoms}}
\quad {\alpha=x,y,z}
\quad {\beta=x,y,z}
}](/wiki/index.php?title=Special:MathShowImage&hash=38ba580c032d615278bb432f68fb69bb&mode=mathml)
where
yields the forces for a given set of KS orbitals.
Similarly, the internal strain tensor is computed using
![{\displaystyle
\Xi_{I\alpha l}=\frac{\partial^2 E}{\partial u_{I\alpha} \partial \eta_l}=
\frac{\partial \sigma_l}{\partial u_{I\alpha}}
\approx
\frac{
\left(
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{\lambda/2}\}]-
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{-\lambda/2}\}]
\right)_l
}{\lambda}
,\qquad {l=xx, yy, zz, xy, yz, zx} \quad {\alpha=x,y,z} \quad {J=1,..,N_\text{atoms}}
}](/wiki/index.php?title=Special:MathShowImage&hash=29a0d61f3abb12ba398dcaddef81ebc8&mode=mathml)
The Born effective charges are then computed using Eq. (42) of Ref. [1].
![{\displaystyle
Z^*_{I\alpha \beta} =
2 \frac{\Omega_0}{(2\pi)^3}
\int_\text{BZ}
\sum_n
\langle
\partial_{u_{I\alpha}}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}}
\rangle d\mathbf{k}
}](/wiki/index.php?title=Special:MathShowImage&hash=fd3bbee43161d8c465b73d12a0fd5a61&mode=mathml)
where
is the atom index,
the direction of the displacement of atom and
the polarization direction.
The results should be equivalent to the ones obtained using LCALCEPS and LEPSILON.
References