LDAUTYPE = 1 | 2 | 4
Default: LDAUTYPE = 2
Description: LDAUTYPE specifies which type of DFT+U approach will be used.
Setting LDAU=.TRUE. in the INCAR file switches on DFT+U.
- LDAUTYPE=1: The rotationally invariant DFT+U introduced by Liechtenstein et al.[1]
- This particular flavour of DFT+U is of the form
![{\displaystyle
E_{\rm HF}=\frac{1}{2} \sum_{\{\gamma\}}
(U_{\gamma_1\gamma_3\gamma_2\gamma_4} -
U_{\gamma_1\gamma_3\gamma_4\gamma_2}){ \hat
n}_{\gamma_1\gamma_2}{\hat n}_{\gamma_3\gamma_4}
}](/wiki/index.php?title=Special:MathShowImage&hash=69610edabf946bacd1de11c70591fc2f&mode=mathml)
- and is determined by the PAW on-site occupancies
![{\displaystyle
{\hat n}_{\gamma_1\gamma_2} = \langle \Psi^{s_2} \mid m_2 \rangle
\langle m_1 \mid \Psi^{s_1} \rangle
}](/wiki/index.php?title=Special:MathShowImage&hash=e4a18ce30991cab30cf0e46746230f62&mode=mathml)
- and the (unscreened) on-site electron-electron interaction
![{\displaystyle
U_{\gamma_1\gamma_3\gamma_2\gamma_4}= \langle m_1 m_3 \mid
\frac{1}{|\mathbf{r}-\mathbf{r}^\prime|} \mid m_2 m_4 \rangle
\delta_{s_1 s_2} \delta_{s_3 s_4}
}](/wiki/index.php?title=Special:MathShowImage&hash=4517619c67b1b1cf942565519fffd80d&mode=mathml)
- where
are real spherical harmonics of angular momentum
=LDAUL.
- The unscreened electron-electron interaction
can be written in terms of the Slater integrals
,
,
, and
(f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially
).
- In practice these integrals are often treated as parameters, i.e., adjusted to reach agreement with experiment for a property like the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters,
and
(LDAUU and LDAUJ, respectively).
and
can also be extracted from constrained-DFT calculations.
- These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
![{\displaystyle L\;}](/wiki/index.php?title=Special:MathShowImage&hash=36a504c4cba5d2ca4622f136a1682150&mode=mathml) |
![{\displaystyle F^0\;}](/wiki/index.php?title=Special:MathShowImage&hash=a5f3a8e7bb539448dcf56ea4677e42b5&mode=mathml) |
![{\displaystyle F^2\;}](/wiki/index.php?title=Special:MathShowImage&hash=576f050de20e388c94660329d76df8f2&mode=mathml) |
![{\displaystyle F^4\;}](/wiki/index.php?title=Special:MathShowImage&hash=ef10b7b06d92ea1e86cd8bc9159bb35e&mode=mathml) |
|
![{\displaystyle 1\;}](/wiki/index.php?title=Special:MathShowImage&hash=dd68cfdc55517deda3cef90bf5aa86ad&mode=mathml) |
![{\displaystyle U\;}](/wiki/index.php?title=Special:MathShowImage&hash=75ed4db64beac291cef1663538f540e8&mode=mathml) |
![{\displaystyle 5J\;}](/wiki/index.php?title=Special:MathShowImage&hash=b1ade83678c38c5f492b6fbc7eef0661&mode=mathml) |
- |
-
|
![{\displaystyle 2\;}](/wiki/index.php?title=Special:MathShowImage&hash=17b6a30f03299b1b7dcb2a2f1f2e2392&mode=mathml) |
![{\displaystyle U\;}](/wiki/index.php?title=Special:MathShowImage&hash=75ed4db64beac291cef1663538f540e8&mode=mathml) |
![{\displaystyle \frac{14}{1+0.625}J}](/wiki/index.php?title=Special:MathShowImage&hash=debaca3e91cc405ed39df8770c3103db&mode=mathml) |
![{\displaystyle 0.625 F^2\;}](/wiki/index.php?title=Special:MathShowImage&hash=5cbb2385918c62cc585850e3c2510bcd&mode=mathml) |
-
|
![{\displaystyle 3\;}](/wiki/index.php?title=Special:MathShowImage&hash=bcbb3621b1a2df8c9ba12c3a60681572&mode=mathml) |
![{\displaystyle U\;}](/wiki/index.php?title=Special:MathShowImage&hash=75ed4db64beac291cef1663538f540e8&mode=mathml) |
![{\displaystyle \frac{6435}{286+195 \cdot 0.668+250 \cdot 0.494}J}](/wiki/index.php?title=Special:MathShowImage&hash=bfba5382dd8794d08b479fabd5fd7f1f&mode=mathml) |
![{\displaystyle 0.668 F^2\;}](/wiki/index.php?title=Special:MathShowImage&hash=73fa5afd74e7eddecc75e6e10719a112&mode=mathml) |
|
- The essence of the DFT+U method consists of the assumption that one may now write the total energy as:
![{\displaystyle
E_{\mathrm{tot}}(n,\hat n)=E_{\mathrm{DFT}}(n)+E_{\mathrm{HF}}(\hat n)-E_{\mathrm{dc}}(\hat n)
}](/wiki/index.php?title=Special:MathShowImage&hash=79b85b5fa6f00398ea65959a438b067e&mode=mathml)
- where the Hartree-Fock like interaction replaces the semilocal on site due to the fact that one subtracts a double counting energy
, which supposedly equals the on-site semilocal contribution to the total energy,
![{\displaystyle
E_{\mathrm{dc}}(\hat n) = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
}](/wiki/index.php?title=Special:MathShowImage&hash=918365b57f149229e8158a81e71b41fd&mode=mathml)
- LDAUTYPE=2: The simplified (rotationally invariant) approach to the DFT+U, introduced by Dudarev et al.[2]
- This flavour of DFT+U is of the following form:
![{\displaystyle
E_{\mathrm{DFT+U}}=E_{\mathrm{LSDA}}+\frac{(U-J)}{2}\sum_\sigma \left[
\left(\sum_{m_1} n_{m_1,m_1}^{\sigma}\right) - \left(\sum_{m_1,m_2}
\hat n_{m_1,m_2}^{\sigma} \hat n_{m_2,m_1}^{\sigma} \right) \right].
}](/wiki/index.php?title=Special:MathShowImage&hash=c14b20c2a538ca3dd2c35d100d9bdade&mode=mathml)
- This can be understood as adding a penalty functional to the semilocal total energy expression that forces the on-site occupancy matrix in the direction of idempotency,
.
- Real matrices are only idempotent when their eigenvalues are either 1 or 0, which for an occupancy matrix translates to either fully occupied or fully unoccupied levels.
- Note: in Dudarev's approach the parameters
and
do not enter seperately, only the difference
is meaningful.
- LDAUTYPE=4: same as LDAUTYPE=1, but without exchange splitting (i.e., LDA instead of LSDA)
- In the LDA+U case the double counting energy is given by,
![{\displaystyle
E_{\mathrm{dc}}(\hat n) = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
}](/wiki/index.php?title=Special:MathShowImage&hash=918365b57f149229e8158a81e71b41fd&mode=mathml)
Warning: it is important to be aware of the fact that when using the DFT+U, in general the total energy will depend on the parameters
and
(LDAUU and LDAUJ, respectively). It is therefore not meaningful to compare the total energies resulting from calculations with different
and/or
, or
and in case of Dudarev's approach (LDAUTYPE=2).
Note on bandstructure calculation: the CHGCAR file contains only information up to angular momentum quantum number
=LMAXMIX for the on-site PAW occupancy matrices. When the CHGCAR file is read and kept fixed in the course of the calculations (ICHARG=11), the results will be necessarily not identical to a selfconsistent run. The deviations are often large for DFT+U calculations. For the calculation of band structures within the DFT+U approach, it is hence strictly required to increase LMAXMIX to 4 (
elements) and 6 (
elements).
Related Tags and Sections
LDAU,
LDAUL,
LDAUU,
LDAUJ,
LDAUPRINT,
LMAXMIX
Examples that use this tag
References
- ↑ A. I. Liechtenstein, V. I. Anisimov, and J. Zaane, Phys. Rev. B 52, R5467 (1995).
- ↑ S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
Contents