|
|
Line 29: |
Line 29: |
| \right) | | \right) |
| </math> | | </math> |
| | |
| | This is schematically depicted in the figure at the top of this page. |
Revision as of 12:34, 6 July 2018
Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalisation of the Bloch condition:
![{\displaystyle
\left[ \begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r) \\
\Psi^{\downarrow}_{\bf k}(\bf r) \end{array} \right] = \left(
\begin{array}{cc}
e^{-i\bf q \cdot \bf R / 2} & 0\\
0 & e^{+i\bf q \cdot \bf R / 2} \end{array}\right) \left[
\begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r-R) \\
\Psi^{\downarrow}_{\bf k}(\bf r-R) \end{array} \right],
}](/wiki/index.php?title=Special:MathShowImage&hash=d87ea979867db8fcc85d3f002be8e039&mode=mathml)
i.e., from one unit cell to the next the up-spinor and down-spinors pick up an additional phase factor of
and
, respectively.
The above definition gives rise to the following magnetization density:
![{\displaystyle
{\bf m} ({\bf r} + {\bf R})= \left(
\begin{array}{c}
m_x({\bf r}) \cos({\bf q} \cdot {\bf R}) - m_y({\bf r}) \sin({\bf q} \cdot {\bf R}) \\
m_x({\bf r}) \sin({\bf q} \cdot {\bf R}) + m_y({\bf r}) \cos({\bf q} \cdot {\bf R}) \\
m_z({\bf r})
\end{array}
\right)
}](/wiki/index.php?title=Special:MathShowImage&hash=34d77f652ba2f6e0f299ebf06489f262&mode=mathml)
This is schematically depicted in the figure at the top of this page.