|
|
Line 90: |
Line 90: |
|
| |
|
| Surfaces and other two dimensional materials are treated with Coulomb kernel truncation methods. | | Surfaces and other two dimensional materials are treated with Coulomb kernel truncation methods. |
| These methods replace the Coulomb kernel <math display="inline"> v(\mathbf{G})</math>, i.e., the <math display="inline">\frac{4\pi}{\mathrm{G}^2}</math> in <math display="inline">V(\mathbf{G})</math> with a 2D kernel (<math display="inline"> v_{\text{2D}}(\mathbf{G})</math>) that removes electrostatic interactions between non-periodic replicas along the surface normal,{{cite|rozzi:prb:2006}}{{cite|sohier:prb:2017}} | | These methods replace the Coulomb kernel <math display="inline"> v(\mathbf{G})</math>, i.e., the <math display="inline">\frac{4\pi}{\mathrm{G}^2}</math> in <math display="inline">V(\mathbf{G})</math> with a 2D kernel (<math display="inline"> v_{\text{2D}}(\mathbf{G})</math>) that removes electrostatic interactions between non-periodic replicas along the surface normal,{{cite|rozzi:prb:2006}},{{cite|sohier:prb:2017}} |
|
| |
|
| <math display="block"> | | <math display="block"> |
On this page, we describe technical issues with computing the energies of charged systems with periodic density functional theory (DFT) calculations.
We first introduce the problem of divergence of the electrostatic energy in DFT calculations and illustrate how this divergence is removed for charge neutral computations.
We then discuss why this divergence is present for charged systems.
Finally, we present methods which have been implemented in VASP that allow for calculations of charged bulk, surface and molecular systems.
Treating divergence in charge neutral calculations
VASP makes use of efficient fast Fourier transforms (FFT) to compute the electrostatic potential from the charge density using the Poisson equation,
![{\displaystyle
V(\mathbf{r}) = 4\pi \int \frac{\rho(\mathbf{r}^\prime)}{\left | \mathbf{r} - \mathbf{r}^\prime \right|} d\mathbf{r}^\prime,
}](/wiki/index.php?title=Special:MathShowImage&hash=02860cc16e741202f414ec37c7ffba70&mode=mathml)
where
and
are all points in real space.
Fourier transforming the Poisson equation to reciprocal space,
![{\displaystyle
V(\mathbf{G}) = \frac{4\pi}{\mathrm{G}^2} \rho(\mathbf{G}),
}](/wiki/index.php?title=Special:MathShowImage&hash=0b9d702586326c483dc2a26d1c1ea465&mode=mathml)
where
is the reciprocal lattice vector and
is its norm.
An obvious issue with computing
is that it diverges for
.
This divergence is handled in charge neutral density DFT calculations by cancelling out individual divergences for the total electrostatic energy, which is the sum of electron-electron, ion-electron and ion-ion energies
![{\displaystyle
E_{\mathrm{electrostatic}} = E_{\mathrm{electron-electron}} + E_{\mathrm{ion-electron}} + E_{\mathrm{ion-ion}}.
}](/wiki/index.php?title=Special:MathShowImage&hash=7bc6c9f0dfe27ac2b3005a038a52dfe8&mode=mathml)
which have the following functional forms,
![{\displaystyle
E_{\mathrm{electron-electron}} = \frac{1}{2} \sum_{\mathrm{G}} \rho_{\mathrm{elec}}(\mathbf{G}) V_{\mathrm{elec}}(\mathbf{G}),
}](/wiki/index.php?title=Special:MathShowImage&hash=645cd672060bb928c8384e1cace22d4d&mode=mathml)
where
and
are the electronic charge density and potential respectively.
![{\displaystyle
E_{\mathrm{ion-electron}} = -\sum_{\mathrm{G}} \rho_{\mathrm{ion}}(\mathbf{G}) V_{\mathrm{elec}}(\mathbf{G}),
}](/wiki/index.php?title=Special:MathShowImage&hash=c0a6c8c34e4ad88f5a4bd47cff544d48&mode=mathml)
where
is the ion charge density.
VASP does not explicitly compute
, but the potential of the ion is reflected through the eigenvalues.
The ion-ion interactions are treated by Ewald summation
![{\displaystyle
E_{\mathrm{ion-ion}} = E_{\mathrm{long-range}} + E_{\mathrm{short-range}} + E_{\mathrm{self}} + E_{\mathrm{homogeneous}},
}](/wiki/index.php?title=Special:MathShowImage&hash=01ed1f144bc4f6241591be08c579e39f&mode=mathml)
where
is the only component which sums over the
vectors and has the form,
![{\displaystyle
E_{\mathrm{ion-ion}} = \frac{1}{2} \sum_{\mathrm{G}} \rho_{\mathrm{ion}}(\mathbf{G}) V_{\mathrm{ion}}(\mathbf{G}).
}](/wiki/index.php?title=Special:MathShowImage&hash=2972f6a4bb4fb74425d3e1cdc755daec&mode=mathml)
The summed
terms of
,
and
are given by,
![{\displaystyle
E_{\mathrm{electrostatic}}(\mathbf{G}=0) = \frac{1}{2}\rho_{\mathrm{elec}}(\mathbf{G}=0) V_{\mathrm{elec}}(\mathbf{G}=0) - \rho_{\mathrm{ion}}(\mathbf{G}=0) V_{\mathrm{elec}}(\mathbf{G}=0) + \frac{1}{2}\rho_{\mathrm{ion}}(\mathbf{G}=0) V_{\mathrm{ion}}(\mathbf{G}=0),
}](/wiki/index.php?title=Special:MathShowImage&hash=eea2b9a309d47c97209eb4304d3a03cf&mode=mathml)
which, can be expressed through the reciprocal space Poisson equation as,
![{\displaystyle
E_{\mathrm{electrostatic}}(\mathbf{G}=0) = \frac{1}{\mathrm{G}^2} \left [\frac{1}{2}\rho_{\mathrm{elec}}(\mathbf{G}=0)^2 - \rho_{\mathrm{ion}}(\mathbf{G}=0)^2 + \frac{1}{2}\rho_{\mathrm{ion}}(\mathbf{G}=0)^2 \right].
}](/wiki/index.php?title=Special:MathShowImage&hash=aad73ffb4debbc40ecb9b0a4fe36dcf4&mode=mathml)
Under the condition that
, the individual divergences would cancel out and the total energy is convergent.
Since the
term of a Fourier transformed quantity is its average, the above condition is satisfied when the average electron and ion charge density are the same, i.e. the system is charge neutral.
Divergences in charged calculations
The total energy does not converge when
, i.e. when the system is not charge neutral.
Alternatively, we can think of this divergence as coming a compensating uniformly smeared out charge density,
with energy
![{\displaystyle
E_{\mathrm{compensating}} = \frac{1}{\mathrm{G}^2} \left [ \delta \rho^2 \right]
}](/wiki/index.php?title=Special:MathShowImage&hash=a8fb81bc7de648600ab4766d3b26111e&mode=mathml)
which cancels out the divergent terms in
.
The consequences of adding a uniform compensating charge is system specific.
For highly screened systems, the potential coming from a moderate compensating charge presents an acceptable amount of error.
Conversely, systems containing vacuum (such as 2D materials, surfaces and molecules) have little screening and hence are more susceptible to artifacts caused by this compensating charge.
Treating charged systems in practice
VASP implements[1] a few methods to deal with charged systems.
These methods are specific to the dimensionality of the system that is being computed.
Bulk charged systems in orthorhombic cells can be treated by the applying analytical monopole-monolpole corrections (see LMONO for further practical details).
Surfaces and other two dimensional materials are treated with Coulomb kernel truncation methods.
These methods replace the Coulomb kernel
, i.e., the
in
with a 2D kernel (
) that removes electrostatic interactions between non-periodic replicas along the surface normal,[2],[3]
![{\displaystyle
v_{\text{2D}}(\mathbf{G}) =
\begin{cases}
4\pi / \mathrm{G}^2 \left[ 1 - e^{-\mathrm{G}_{\parallel}R} \left ( \cos(\mathrm{G}_\perp R_\mathrm{c}) + \mathrm{G}_\perp / \mathrm{G}_{\parallel} \sin(\mathrm{G}_{\perp}R_\mathrm{c}) \right ) \right] \quad & \mathrm{G} \neq 0 \\
4\pi / \mathrm{G}_\perp^2\left[ 1 - \cos(\mathrm{G}_\perp R_\mathrm{c}) - \mathrm{G}_{\perp}R_\mathrm{c} \sin(\mathrm{G}_\perp R_\mathrm{c}) \right] \quad & \mathrm{G}_{\parallel} = 0 \\
-2\pi R_\mathrm{c}^2 \quad & \mathrm{G}=0
\end{cases}
}](/wiki/index.php?title=Special:MathShowImage&hash=c48da9a96494888a2c0d5f14884bcf11&mode=mathml)
where
is the norm of the
vector parallel to the surface and
is the
vector along the surface normal.
A similar change can be made to the Coulomb kernel to treat charged molecules (so-called 0D systems with
)) to remove interactions with periodic replicas in all directions,
![{\displaystyle
v_{\text{0D}}(\mathbf{G}) =
\begin{cases}
4\pi/\mathrm{G}^2 \left( 1 - \cos\left(\mathrm{G}R_\mathrm{c}\right) \right) & \quad \mathrm{G}\neq 0 \\
2\pi R_\mathrm{c}^2 & \quad \mathrm{G} = 0
\end{cases}
}](/wiki/index.php?title=Special:MathShowImage&hash=6420573eb8ed7886ec2c8396e7aa1602&mode=mathml)
See KERNEL_TRUNCATION/LTRUNCATE for further details on applying these Coulomb truncation methods in practice.
- ↑ S. Vijay, M. Schlipf, H. Miranda, F. Karsai, M. Marsman, G. Kresse, Manuscript in preparation (2024).
- ↑ C. A. Rozzi, D. Varsano, A. Marini, E. K. Gross, A. J. Rubio, Phys. Rev. B 73(20), 20511 (2006).
- ↑ T. Sohier, M. Calandra, and F. Mauri, Phys. Rev. B 96, 75448 (2017).