|
|
Line 1: |
Line 1: |
| The Bethe-Salpeter equation (BSE) is the Dyson equation for the four-point polarizability in the MBPT, which explicitly accounts for the electron-hole interaction. The BSE provides the state of the art approach for calculating the absorption spectra in solids. | | The Bethe-Salpeter equation (BSE) is the Dyson equation for the two-particle Green's function in the MBPT, which explicitly accounts for the electron-hole interaction. The BSE provides the state of the art approach for calculating the absorption spectra in solids. |
| == Theory == | | == Theory == |
| === BSE === | | === BSE === |
Revision as of 14:36, 16 October 2023
The Bethe-Salpeter equation (BSE) is the Dyson equation for the two-particle Green's function in the MBPT, which explicitly accounts for the electron-hole interaction. The BSE provides the state of the art approach for calculating the absorption spectra in solids.
Theory
BSE
The formalism of the Bethe-Salpeter equation (BSE) allows us to include the electron-hole interaction, i.e., the excitonic effects, in the calculation of the dielectric function. In the BSE, the excitation energies correspond to the eigenvalues
of the following linear problem
![{\displaystyle
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^* & \mathbf{A}^*
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_\lambda \\
\mathbf{Y}_\lambda
\end{array}\right)=\omega_\lambda\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_\lambda \\
\mathbf{Y}_\lambda
\end{array}\right)~.
}](/wiki/index.php?title=Special:MathShowImage&hash=c3c22f860e51e0743a085e08b3fb9cb4&mode=mathml)
The matrices
and
describe the resonant and anti-resonant transitions between the occupied
and unoccupied
states
![{\displaystyle
A_{vc}^{v'c'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'} + \langle cv'|V|vc'\rangle - \langle cv'|W|c'v\rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=381bf213f829074bd2457667b599e615&mode=mathml)
The energies and orbitals of these states are usually obtained in a
calculation, but DFT and Hybrid functional calculations can be used as well.
The electron-electron interaction and electron-hole interaction are described via the bare Coulomb
and the screened potential
.
The coupling between resonant and anti-resonant terms is described via terms
and
![{\displaystyle
B_{vc}^{v'c'} = \langle vv'|V|cc'\rangle - \langle vv'|W|c'c\rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=6a7181ff9309c8e11e073defaa493b10&mode=mathml)
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian.
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e.,
and
.
Hence, the TDA reduces the BSE to a Hermitian problem
![{\displaystyle
AX_\lambda=\omega_\lambda X_\lambda~.
}](/wiki/index.php?title=Special:MathShowImage&hash=5ea774549184d69cbe3483e61bf1127d&mode=mathml)
In reciprocal space, the matrix
is written as
![{\displaystyle
A_{vc\mathbf{k}}^{v'c'\mathbf{k}'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'}\delta_{\mathbf{kk}'}+
\frac{2}{\Omega}\sum_{\mathbf{G}\neq0}\bar{V}_\mathbf{G}(\mathbf{q})\langle c\mathbf{k}|e^{i\mathbf{Gr}}|v\mathbf{k}\rangle\langle v'\mathbf{k}'|e^{-i\mathbf{Gr}}|c'\mathbf{k}'\rangle
-\frac{2}{\Omega}\sum_{\mathbf{G,G}'}W_{\mathbf{G,G}'}(\mathbf{q},\omega)\delta_{\mathbf{q,k-k}'}
\langle c\mathbf{k}|e^{i(\mathbf{q+G})}|c'\mathbf{k}'\rangle
\langle v'\mathbf{k}'|e^{-i(\mathbf{q+G})}|v\mathbf{k}\rangle,
}](/wiki/index.php?title=Special:MathShowImage&hash=5bbbc090c9c8d0efc68b8729ab42b857&mode=mathml)
where
is the cell volume,
is the bare Coulomb potential without the long-range part
![{\displaystyle
\bar{V}_{\mathbf{G}}(\mathbf{q})=\begin{cases}
0 & \text { if } G=0 \\
V_{\mathbf{G}}(\mathbf{q})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} & \text { else }
\end{cases}~,
}](/wiki/index.php?title=Special:MathShowImage&hash=ef5f790f72a3be9570612b20108a88bc&mode=mathml)
and the screened Coulomb potential
Here, the dielectric function
describes the screening in
within the random-phase approximation (RPA)
![{\displaystyle
\epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} \chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{\mathrm{RPA}}(\mathbf{q}, \omega).
}](/wiki/index.php?title=Special:MathShowImage&hash=a8eee543e225a70d48980b9c159c19dd&mode=mathml)
Although the dielectric function is frequency-dependent, the static approximation
is considered a standard for practical BSE calculations.
The macroscopic dielectric which account for the excitonic effects is found via eigenvalues
and eigenvectors
of the BSE
![{\displaystyle
\epsilon_M(\mathbf{q},\omega)=
1+\lim_{\mathbf{q}\rightarrow 0}v(q)\sum_{\lambda}
\left|\sum_{c,v,k}\langle c\mathbf{k}|e^{i\mathbf{qr}}|v\mathbf{k}\rangle X_\lambda^{cv\mathbf{k}}\right|^2
\times
\left(\frac{1}{\omega_\lambda - \omega - i\delta} + \frac{1}{\omega_\lambda+\omega + i\delta}\right)~.
}](/wiki/index.php?title=Special:MathShowImage&hash=a49e18967e76d29ad36218d238c15b01&mode=mathml)
How to
References
Pages in category "Bethe-Salpeter equations"
The following 25 pages are in this category, out of 25 total.