Phonons are the collective excitation of nuclei in an extended periodic system.
To compute them we start by Taylor expanding the total energy (
) around the set of equilibrium positions of the nuclei (
)
![{\displaystyle
E(\{\mathbf{R}\})=
E(\{\mathbf{R}^0\})+
\sum_{I\alpha} \frac{\partial E(\{\mathbf{R^0}\})}{\partial R_{I\alpha}} (R_{I\alpha}-R^0_{I\alpha})+
\sum_{I\alpha J\beta} \frac{\partial E(\{\mathbf{R}^0\})}{\partial R_{I\alpha} \partial R_{J\beta}}
(R_{I\alpha}-R^0_{I\alpha}) (R_{J\beta}-R^0_{J\beta})+
\mathcal{O}(\mathbf{R}^3),
}](/wiki/index.php?title=Special:MathShowImage&hash=4aacc2b296aa31e56d30c921993625d6&mode=mathml)
where
the positions of the nuclei.
The first derivative of the total energy with respect to the nuclei corresponds to the forces
,
and the second derivative to the second-order force-constants
![{\displaystyle
\Phi_{I\alpha J\beta} (\{\mathbf{R}^0\}) =
\left. \frac{\partial E(\{\mathbf{R}\})}{\partial R_{I\alpha} \partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}}
=
- \left. \frac{\partial F_{I\alpha}(\{\mathbf{R}\})}{\partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}}.
}](/wiki/index.php?title=Special:MathShowImage&hash=04bbbdf85736c6fdc93dc01a452dc63c&mode=mathml)
Changing variables in the Taylor expansion of the total energy with
that corresponds to the displacement of the atoms with respect to their equilibrium position
leads to
![{\displaystyle
E(\{\mathbf{R}\})=
E(\{\mathbf{R}^0\})+
\sum_{I\alpha} -F_{I\alpha} (\{\mathbf{R}^0\}) u_{I\alpha}+
\sum_{I\alpha J\beta} \Phi_{I\alpha J\beta} (\{\mathbf{R}^0\}) u_{I\alpha} u_{J\beta} +
\mathcal{O}(\mathbf{R}^3)
}](/wiki/index.php?title=Special:MathShowImage&hash=4710fd02e6e1868d5258a263ca794a43&mode=mathml)
If we take the system to be in equilibrium, the forces on the atoms are zero and then the Hamiltonian of the system is
![{\displaystyle
H =
\frac{1}{2} \sum_{I\alpha} M_I \dot{u}^2_{I\alpha} +
\frac{1}{2} \sum_{I\alpha J\beta} \Phi_{I\alpha J\beta} u_{I\alpha} u_{J\beta},
}](/wiki/index.php?title=Special:MathShowImage&hash=336a97ab68c2423222e5845c807eed79&mode=mathml)
with
the mass of the
-th nucleus.
The equation of motion is then given by
![{\displaystyle
M_I \ddot{u}_{I\alpha} = -
\Phi_{I\alpha J\beta} u_{J\beta}.
}](/wiki/index.php?title=Special:MathShowImage&hash=6d0ec5f1bc8ae9d3d167681e54c6a619&mode=mathml)
We then look for solutions of the form of plane waves traveling parallel to the wave vector
, i.e.
![{\displaystyle
\mathbf{u}^\mu_{I\alpha}(\mathbf{q},t) = \frac{1}{2} \frac{1}{\sqrt{M_I}}
\left\{
A^\mu(\mathbf{q}) \xi^{\mu }_{I\alpha}(\mathbf{q})
e^{ i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]}+
A^{\mu*}(\mathbf{q}) \xi^{\mu*}_{I\alpha}(\mathbf{q})
e^{-i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]}
\right\}
}](/wiki/index.php?title=Special:MathShowImage&hash=b1e726d410174f72ba8bf3bfd845ff28&mode=mathml)
where
are the phonon mode eigenvectors and
the amplitudes.
Replacing it in the equation of motion we obtain the following eigenvalue problem
![{\displaystyle
\sum_{J\beta} D_{I\alpha J\beta} (\mathbf{q})
\xi^{\mu }_{J\beta}(\mathbf{q}) =
\omega^\mu(\mathbf{q})^2 \xi^{\mu }_{I\alpha}(\mathbf{q})
}](/wiki/index.php?title=Special:MathShowImage&hash=1e3feec89de3b4800e1b9f56abafdc9e&mode=mathml)
with
![{\displaystyle
D_{I\alpha J\beta} (\mathbf{q}) =
\frac{1}{\sqrt{M_I M_J}} \Phi_{I\alpha J\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_J-\mathbf{R}_I)}
}](/wiki/index.php?title=Special:MathShowImage&hash=44f61d79f763a7ef2b7e4178b60515bf&mode=mathml)
the dynamical matrix in the harmonic approximation.
Now by solving the eigenvalue problem above we can obtain the phonon modes
and frequencies
at any arbitrary q point.
Finite differences
The second-order force constants are computed using finite differences of the forces when each ion is displaced in each independent direction.
This is done by
creating systems with finite ionic displacement of atom
in direction
with magnitude
,
computing the orbitals
and the forces for these systems.
The second-order force constants are then computed using
![{\displaystyle
\Phi_{I\alpha J\beta}=
\frac{\partial^2E}{\partial u_{I\alpha} \partial u_{J\beta}}=
-\frac{\partial F_{I\alpha}}{\partial u_{J\beta}}
\approx
-\frac{
\left(
\mathbf{F}[\{\psi^{u_{J\beta}}_{\lambda/2}\}]-
\mathbf{F}[\{\psi^{u_{J\beta}}_{-\lambda/2}\}]
\right)_{I\alpha}}{\lambda},
\quad {I=1,..,N_\text{atoms}}
\quad {J=1,..,N_\text{atoms}}
\quad {\alpha=x,y,z}
\quad {\beta=x,y,z}
}](/wiki/index.php?title=Special:MathShowImage&hash=38ba580c032d615278bb432f68fb69bb&mode=mathml)
where
corresponds to the displacement of atom
in the cartesian direction
and
retrieves the set of forces acting on all the ions given the
KS orbitals.
Similarly, the internal strain tensor is
![{\displaystyle
\Xi_{I\alpha l}=\frac{\partial^2 E}{\partial u_{I\alpha} \partial \eta_l}=
\frac{\partial \sigma_l}{\partial u_{I\alpha}}
\approx
\frac{
\left(
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{\lambda/2}\}]-
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{-\lambda/2}\}]
\right)_l
}{\lambda}
,\qquad {l=xx, yy, zz, xy, yz, zx} \quad {\alpha=x,y,z} \quad {J=1,..,N_\text{atoms}}
}](/wiki/index.php?title=Special:MathShowImage&hash=29a0d61f3abb12ba398dcaddef81ebc8&mode=mathml)
where
computes the strain tensor given the
KS orbitals.
Density functional perturbation theory
Density-functional-perturbation theory provides a way to compute the second-order linear response to ionic displacement, strain, and electric fields. The equations are derived as follows.
In density-functional theory, we solve the Kohn-Sham (KS) equations
![{\displaystyle
H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle=
e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle,
}](/wiki/index.php?title=Special:MathShowImage&hash=4b8755bfb2c1c8878595281ee75ca2ba&mode=mathml)
where
is the DFT Hamiltonian,
is the overlap operator and,
and
are the KS eigenstates.
Taking the derivative with respect to the ionic displacements
, we obtain the Sternheimer equations
![{\displaystyle
\left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right]
| \partial_{u_{I\alpha}}\psi_{n\mathbf{k}} \rangle
=
-\partial_{u_{I\alpha}} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right]
| \psi_{n\mathbf{k}} \rangle
}](/wiki/index.php?title=Special:MathShowImage&hash=d9fcc3d4366c42dbd0b2a9874c61ac3e&mode=mathml)
Once the derivative of the KS orbitals is computed, we can write
![{\displaystyle
| \psi^{u_{I\alpha}}_\lambda \rangle =
| \psi \rangle +
\lambda | \partial_{u_{I\alpha}}\psi \rangle.
}](/wiki/index.php?title=Special:MathShowImage&hash=7bbb0baabc1d86493b590eb16bafa7e4&mode=mathml)
where
is a small numeric value to use in the finite differences formulas below.
The second-order response to ionic displacement, i.e., the force constants or Hessian matrix
can be computed using the same equation used in the case of the finite differences approach
![{\displaystyle
\Phi_{I\alpha J\beta}=
\frac{\partial^2E}{\partial u_{I\alpha} \partial u_{J\beta}}=
-\frac{\partial F_{I\alpha}}{\partial u_{J\beta}}
\approx
-\frac{
\left(
\mathbf{F}[\{\psi^{u_{J\beta}}_{\lambda/2}\}]-
\mathbf{F}[\{\psi^{u_{J\beta}}_{-\lambda/2}\}]
\right)_{I\alpha}}{\lambda},
\quad {I=1,..,N_\text{atoms}}
\quad {J=1,..,N_\text{atoms}}
\quad {\alpha=x,y,z}
\quad {\beta=x,y,z}
}](/wiki/index.php?title=Special:MathShowImage&hash=38ba580c032d615278bb432f68fb69bb&mode=mathml)
where again
yields the forces for a given set of
KS orbitals.
Similarly, the internal strain tensor is computed using
![{\displaystyle
\Xi_{I\alpha l}=\frac{\partial^2 E}{\partial u_{I\alpha} \partial \eta_l}=
\frac{\partial \sigma_l}{\partial u_{I\alpha}}
\approx
\frac{
\left(
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{\lambda/2}\}]-
\mathbf{\sigma}[\{\psi^{u_{I\alpha}}_{-\lambda/2}\}]
\right)_l
}{\lambda}
,\qquad {l=xx, yy, zz, xy, yz, zx} \quad {\alpha=x,y,z} \quad {J=1,..,N_\text{atoms}}
}](/wiki/index.php?title=Special:MathShowImage&hash=29a0d61f3abb12ba398dcaddef81ebc8&mode=mathml)
where
computes the strain tensor given the
KS orbitals.
The Born effective charges are then computed using Eq. (42) of Ref. [1].
![{\displaystyle
Z^*_{I\alpha \gamma} =
2 \frac{\Omega_0}{(2\pi)^3}
\int_\text{BZ}
\sum_n
\langle
\partial_{u_{I\alpha}}\psi_{n\mathbf{k}} | (\vec{\beta}_{n\mathbf{k}})_\gamma
\rangle d\mathbf{k}
}](/wiki/index.php?title=Special:MathShowImage&hash=d721adc621b6496b0dec2899e3af8988&mode=mathml)
where
is the atom index,
the direction of the displacement of the atom,
the polarization direction,
and
is the polarization vector defined in Eq. (30) in Ref. [2].
The results should be equivalent to the ones obtained using LCALCEPS and LEPSILON.
References
- ↑ X. Gonze and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997).
- ↑ M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).