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Introduction

Basic Considerations

Hermiticity of Ĥ −→ forces on the atoms can be calculated
via the Hellmann-Feynman theorem

∇I ε0(~R) =
∂

∂~RI

〈Ψ0 | He(~R) | Ψ0〉 = 〈Ψ0(~R) | ∇IHe(~R) | Ψ0(~R)〉

Forces acting on the ions are given by the expectation value of
the gradient of the electronic Hamiltonian in the ground-state

atomic coordinates in a cell with fixed cell shape:
Hellmann-Feynman forces

geometry of the unit cell (volume, shape):
Hellmann-Feynman stresses
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. . . Basic Considerations

in equilibrium: E (~R,V , cellshape . . . ) = min.

(1): find the atoms’ positions ~R minimizing E

⇒ search for the (local) minimum of E (~R) = f (~x) with, f
expanded around equilibrium ~x0

f (~x) ≈ a + ~b~x +
1

2
~xB~x = ā +

1

2
(~x − ~x0)B(~x − ~x0)

B = Bij =
∂2f

∂xi∂xj
Hessian matrix

at a stationary point the gradient of f (~gi (~x)) vanishes:
~gi (~x) = ∂f

∂xi
=
∑

j Bij(~xj − ~x0
j ) = 0

at a minimum: B: has to be positive definite

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
Algorithms used in VASP
INCAR parameters in VASP, Problem Handling

Introduction

... Basic Considerations: Newton Algorithm

1 start with an arbitrary point ~x1

2 calculate the gradient of f at ~x1:
g(~x1) = ∂f

∂~x = B(~x1 − ~x0)

3 perform a step
−→ ~x2 = ~x1 − B−1~g(~x1)

in practice: B is approximated by the largest eigenvalue of the
Hessian matrix, Γmax(B)

steepest descent algorithm

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
Algorithms used in VASP
INCAR parameters in VASP, Problem Handling

Introduction

Steepest descent

approximate B by the largest eigenvalue of the Hessian matrix � steepest descent
algorithm (Jacobi algorithm for linear equations)

1. initial guess� x1

2. calculate the gradient� g �� x1 �
3. make a step into the direction of the steepest descent

� x2 � � x1� 1 � Γmax � B � � g �� x1 �
4. repeat step 2 and 3 until convergence is reached

for functions with long steep valleys convergence can be very slow

Γ

Γ min

max

G. KRESSE, IONIC OPTIMISATION Page 5

Steepest Descent Algorithm

1 guess ~x1

2 calculate ~g(~x1)

3 step along the steepest
descent direction
~x2 = ~x1 − 1

Γmax
~g(~x1)

4 repeat 2+3 −→
converged geometry
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Convergence of the Steepest Descent Algorithm

minimize the number of steps requested to reach the afforded
accuracy in the ion positions: step-widths along ~g(~x1)

Eigenvalues of B: vibrational modes of the system

Γmax: “hardest mode” maximum stable step width
Γmin: “softest mode” slowest convergence

to reduce the error in all components to a certain fraction, the
number of steps can be estimated from Γmax

Γmin

use preconditioning of B to speed up convergence
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Algorithms used in VASP

Overview

aims:
1 reach asymptotic convergence rates
2 maintain the relaxation history

Quasi-Newton Schemes (DIIS): direct inversion in the iterative
subspace

Conjugate Gradient (GC): search directions are conjugated to
the previous seach directions

Damped Molecular Dynamics (MD): minimization problem is
cast into a simulated annealing approach

Doris Vogtenhuber
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The Quasi-Newton Algorithm

simple Quasi-Newton Scheme: for a set of points ~x i and
gradients ~g i (i = 1, . . . ,N)

find a linear combination of ~x i which minimizes ~g i

constraint:
∑

i αi = 1:

~g i (
∑
i

αi~x i ) = B(
∑
i

αi~x i − ~x0)

= B(
∑
i

αi~x i −
∑
i

αi~x0)

=
∑
i

αiB(~x i − ~x0) =
∑
i

αi~g i

gradient: linear in its arguments
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The Full DIIS Algorithm

1 start with a single initial point ~x i

2 steepest descent step along gradient ~g(~x1) : ~x2 = ~x1 − λ~g 1

3 −→ new gradient ~g 2 = ~g(~x2)

4 search for the minimal gradient in the subspace spanned by
~g i :−→ ~gopt =

∑
i α

i~g i

5 calculate the corresponding position ~xopt =
∑

i α
i~x i

6 −→ ~x3 = ~xopt − λ~gopt

Doris Vogtenhuber
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Algorithms used in VASP
1. steepest descent step from �x0 to �x1 (arrows correspond to gradients �g0 and �g1)

2. gradient along indicated red line is now know, determine optimal position �x1
opt

3. another steepest descent step form �x1
opt along �gopt � �g � �x1

opt�
4. calculate gradient x2 � now the gradient is known in the entire 2 dimensional space

(linearity condition) and the function can be minimised exactly

optx1

x0

1

x2

x

x0

a x + a x,    a +a =10  0    1   1     0    1
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full DIIS

start with single initial point x0

steepest descent step (sds)

opt. position ~x1
opt

sds from ~x1
opt along ~gopt −→ ~x2

−→ ~g(~x2)

linearity −→ gradient is known
in 2D

minimize f exactly

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
Algorithms used in VASP
INCAR parameters in VASP, Problem Handling
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The Conjugate-Gradient Algorithm (CG)

search directions: conjugated to the previous seach directions

start with ~x0

1 steepest descent step along gradient with line minimization
2 gradient at the current position ~g(~xN)
3 conjugate ~g(~xN) to the previous search direction:

~s(~xN) = ~g(~xN)+γ~g(~xN−1), γ =
(~g(~xN)− ~g(~xN−1)) · ~g(~xN)

~g(~xN−1) · ~g(~xN−1)

4 line minimization along ~sN

5 if ~g is not sufficiently small: continue with 1

search directions are orthogonal (step 3): ~sNB~sM ∀N,M

CG finds the min. of a quadratic function with k DOF in
k + 1 steps exactly
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Algorithms used in VASP1. steepest descent step from �x0, search for minimum along �g0 by performing several trial

steps (crosses, at least one triastep is required) � �x1

2. determine new gradient �g1 � �g � �x1� and conjugate it to get �s1 (green arrow)

for 2d-functions the gradient points now directly to the minimum

3. minimisation along search direction �s1

1x

x0

x2

1x1x

x0

s1
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The CG Algorithm

sds from ~x0 along ~g 0

trial step(s) x,
Nx ≥ 1),−→ ~x1

−→ new ~g 1 = ~g(~x1)

conjugate ~g 1 : −→,~s1

~s1 points directly towards
the minimum

minimization along ~s1

Doris Vogtenhuber
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Algorithms used in VASP

Damped MD (MD)

atoms’ positions ~x are regarded as dynamic degrees of freedom

forces (=gradients) accelerate the motion of the atoms

equation of motions of the atoms: ~̈x = −2α~F − µ~̇x
introduce an additional friction term µ

integration of this eqation: simple velocity Verlet algorithm

~vN+1/2 =
(

(1− µ/2)~vN−1/2 − 2α~FN

)
/(1 + µ/2)

~xN+1 = ~xN + ~vN+1/2

Doris Vogtenhuber
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Algorithms used in VASP� behaves like a rolling ball with a friction

it will accelerate initially, and then deaccelerate when close to the minimum

� if the optimal friction is chosen the ball will glide right away into the minimum

� for a too small friction it will overshoot the minimum and accelerate back

� for a tool large friction relaxation will also slow down (behaves like a steepest

descent)

x0

G. KRESSE, IONIC OPTIMISATION Page 18

Damped MD (MD)

“rolling ball” with friction
(µ)

µ too small: minimum
overshot,
back-acceleration

µ too large: relaxation
slows down

Doris Vogtenhuber
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INCAR Parameters in VASP

Overview

Algorithm main flag additional flags termination

DIIS IBRION =1 POTIM, NFREE EDIFFG

CG IBRION =2 POTIM EDIFFG

damped MD IBRION =3 POTIM, SMASS EDIFFG

EDIFFG “convergence criterium”:

EDIFFG > 0 : |(EN − EN−1)| < EDIFFG

EDIFFG < 0 : |~FN
i | < | EDIFFG | ∀i = 1,Nions

Doris Vogtenhuber
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INCAR Parameters in VASP

Parameter Usage by the Algorithms of VASP

DIIS

POTIM (=0.5) generally determines the step size (no line
minimizations)
NFREE # of ionic steps stored in the iteration history: for the
set of points ~x i and gradients ~g i (i = 1, . . . ,N)
NFREE (=5) = max(N)

CG

POTIM (=0.5) : size of the first trial step, the subsequent line
minimization is performed using Brent’s algorithm

damped MD: in ~vN+1/2 =
(

(1− µ/2)~vN−1/2 − 2α~FN

)
/(1 + µ/2)

POTIM ≈ α, good choices: 0.15 < POTIM <0.4
SMASS (=0.4) ≈ µ, which should be ≈ 2

√
Γmin/Γmax

Doris Vogtenhuber
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Choice of the most Appropriate AlgorithmWhy so many algorithms :-(... decision chart

      close to minimum 1−3 degrees of freedom

Really, this is too complicated

no

yes

no

very broad vib. spectrum
>20 degrees of freedom

yes

yes

no

no

yes

                DIIS

damped MD or QUICKMIN

    CG
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Problem Handling

(Some Other) Reasons for Bad Convergence

unreasonable starting geometry (POSCAR)

lattice parameters, atomic positions
check OUTCAR for interatomic distances, forces of the input
geometry, external pressure, ( if ISIF > 0)

sub-optimal settings of (some) INCAR parameters

bad electronic convergence of (one of) the ionic steps −→
wrong forces
check OSZICAR for the convergence of each ionic step: dE ,
charge density convergence
increase NELM, decrease the (spin density) mixing parameters
choose a different BZ-integration method ISMEAR, SIGMA

choose a different electronic relaxation algorithm ALGO

basis sets too small (−→ aliasing errors)

is the ~k-mesh appropriate? (modify KPOINTS)
Doris Vogtenhuber
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Problem Handling

Aliasing Errors

related to errors caused by the truncated FFT grid

folding theorem: ρ =
∫
ψ∗nψn (V H

G ) contain components up to
2n = 2Gcutoff after back-transformation from ρr to ρG (V )

residual Vector (Vψ): components up to 3Gcutoff

Fourier grid has to include all wave-vectors up to 2Gcutoff .

if this is not the case: −→ aliasing (“wrap around”) errors:
components of ρ are wrapped around from the other side of
the box due to the periodicity

high frequency components are aliased to low-frequency
components

Doris Vogtenhuber
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Problem Handling

Drifts in the Forces

impact of aliasing errors on the results::

in a lattice with perfect translation symmetry: if all atoms of
the cell are shifted by the same translation vector,

E has to remain exactly the same
forces sum up to 0:

∑Nat

i=1
~Fi = 0

aliasing errors destroy the translational invariance:

⇒ atoms equivalent by symmetry are equivalent no longer

⇒ drifts

BUT VASP symmetrizes ρ and ~F explicitely unless ISYM=0

Doris Vogtenhuber
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Problem Handling

Drifts in the Forces

to reduce drifts in the forces (written in OUTCAR)

bulk & surfaces: increase the precision ENCUT, PREC

surfaces: in 3D periodic cell, the origin of the cell is arbitrary,
i.e. the slab may start drifting through the vacuum

keep (at least) one layer fixed (Selective Dynamics option
in POSCAR)
polar surfaces: include dipole corrections (IDIPOL, LDIPOL)
to avoid artificial electrostatic forces across the vacuum layer

Doris Vogtenhuber
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Cell Volume Optimization

Introduction

the equilibrium volume Veq and shape of a crystal calculated
from ab initio depend on the XC-type used:

LDA: overbinding −→ a0 too small
PBE, PW91: underbinding −→ a0 too large
results are improved using specially designed functionals
(PBEsol, HSE),...

⇒ accurate calculations should always be performed for the
cell at equilibrium for the respective XC-type to avoid artifacts
(unless there is good reason not to do so)

Doris Vogtenhuber
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Strategies to obtain Veq

“by hand”: series of calculations at different cell volumes, −→
Veq = V (min(E (V )):
very old-fashioned, almost impracticable for non-cubic cells

“by hand”: fitting to thermodynamic equations:
eg. Birch-Murnaghan fit

VASP: automatic optimization, based on the calculated
Hellmann-Feynman stresses

the automatic geometry optimization sensitively depends on
the quality of the used basis sets:

E-cutoffs (completeness of the basis set), FFT-grids
~k-meshes

Doris Vogtenhuber
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Energy Cutoff: Basis Sets

at each ~k , the plane waves that are included in the basis have
to fulfill the criterium ~2

2me
|~G + ~k |2 < Ecutoff

Ecutoff defined by ENCUT: default: max(ENMAX), given in
POTCAR for each element

Ecutoff ≈ ~G 2 ⇒≈ changes of cell volume and -shape

⇒ the default cutoff should only be used for calculations with
fixed cell-shape and -volume, eg.

frozen phonons
surface and adsorption calculations
MD (NVT ensemble)

Doris Vogtenhuber
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Cell Volume OptimizationFixed basis-set calculations

τ 1

τ 1

τ
2

b  =

b2

2π/τ
1 1

G’cut

b  =

b2

Gcut

2π/τ
1 1

� the cutoff decreases by a factor τ1 � τ� 1

when the lattice is expanded from

τ1� τ� 1

� for the expanded lattice the basis set

corresponds effectively to a lower cut-

off G�
cut and therefore a lower quality,

� the energy is overestimated at

larger volumes

� the volume is underestimated for

fixed basis-set calculations

G. KRESSE, ACCURACY AND VALIDAION OF RESULTS Page 8

explanation:

lattice expanded τ1 −→ τ ′1
cutoff decreases by a a factor τ1

τ ′1

effective cutoff G ′cut is lower

E is overestimated for larger V s

the apparent Veq is too small

Doris Vogtenhuber
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Cell Volume OptimizationFixed basis-sets instead of fixed cutoff

� possible by restarting with ISTART=2

but such calculations clearly yield

much too small volumes even at 270

eV (5 % error)

� effectively the cutoff decreases when

the volume is increased (since the

reciprocal lattice vectors become

shorter)

� fixed basis set calculations are

obviously a very bad idea

11 11.5 12 12.5 13

volume V (A
3
)

-3.6

-3.4

E
 (

eV
)

240 eV, basis set fixed
240 eV, cutoff fixed
270 eV, basis set fixed
270 eV, cutoff fixed

G. KRESSE, ACCURACY AND VALIDAION OF RESULTS Page 7

Improvement using fixed basis sets?

start from WAVECAR with ISTART =2

NO!!, because

E effective
cutoff decreases with increasing V

⇒ quality of the basis set becomes
worse with increasing V

⇒ min(E (V )) is shifted

dense ~k meshes necessary to obtain
smooth curves (|~k + ~G |2 )!

Doris Vogtenhuber
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Cell Shape relaxations

Stress tensor

� the stress tensor is implicitly calcu-

lated at a fixed basis set

upon cell-shape or volume relaxation

one obtains too small volumes

(2-5 % errors at the default cutoff)

� cutoff must be increased by 20-30%,

when cell relaxations are performed

� calculations at the equilibrium lattice

parameter of fcc Cu:

270 eV: p= � 50 kBar (contract)

350 eV: a few kBar (correct result)
200 250 300 350 400

cutoff energy E(eV)

-1000

-500

0

pr
es

su
re

 (
kB

ar
)

default cutoff

G. KRESSE, ACCURACY AND VALIDAION OF RESULTS Page 9

Stress Tensor

VASP does not adopt the basis set in
a run

stress tensor σij : implicitely calculated
with a fixed-basis-set setup

for Cu (270eV): contraction predicted
by error (p=-50 kB)

increase ENCUT (by 30%) to

perform lattice relaxations
calculate stress tensors and pressure
(P = 1

3Trσij)

Doris Vogtenhuber
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Cell Shape relaxations

“recipe” for Determining Cell Shapes

always use an increased cutoff: ENCUT = 1.3*max(ENMAX)

do it step-wise:
1 start with 1-2 steps (NSW) from your guessed input geometry

(coarse pre-relaxation)
2 delete WAVECAR
3 continue from CONTCAR with slightly more steps
4 repeat 1-3 until the remaining pressure (and stress tensor

components) are in accordance with the afforded accuracy

if the space-group of the system is known, use ISYM = 2 to
avoid symmetry violations due to numerical errors

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
INCAR Parameters, Problem Handling

Outline
1 Ionic Relaxation

Introduction
Algorithms used in VASP
INCAR parameters in VASP, Problem Handling

2 Lattice Relaxation
Cell Volume Optimization
INCAR parameters in VASP

3 Phonons
Introduction
INCAR Parameters, Problem Handling

4 Molecular Dynamics
Introduction
MD Algorithms implemented in VASP
Thermostats implemented in VASP

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
INCAR Parameters, Problem Handling

Introduction

Basics

vibrations of the crystal lattice influence

elastic
thermodynamic
optical
electronic transport properties
“soft modes” indicate
phase transitions (bulk) or
dissociation (dissociative adsorbtion processes)

Doris Vogtenhuber
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Basics

if atom m in cell l of a crystal ~R0(lm) is displaced by ~u

−→ ~R(lm) = ~R0(lm) + ~u(lm)

kinetic energy: T = 1
2

∑
lmα Mmu̇2

α(lm), potential energy: expanded

V (~R(lm)) = V0(~R0(lm))︸ ︷︷ ︸
=V0=0

+
∑
lmα

∂V (~R(lm))

∂Rα(lm)
uα(lm)︸ ︷︷ ︸

=0 in equilibrium

+
1

2

∑
lmα,l′m′β

∂2V (~R(lm))

∂Rα(lm)∂Rβ(l ′m′)︸ ︷︷ ︸
Φαβ(ll′mm′) force constant

uα(lm)uβ(l ′m′)

Φαβ(ll ′mm′): derivative taken at ~R(lm) = ~R0(lm)
Doris Vogtenhuber
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Basics

Φαβ(ll ′mm′): component α of the force acting on atom (lm),
caused by the displacement of atom (l ′m′) in direction β

equations of motion

Mmüα(lm) = − ∂V

∂uα(lm)
= −

∑
l′m′β

Φαβ(ll ′mm′)uβ(l ′m′)

use symmetry

harmonic ansatz: uα(lm, t) =
√

Mmeα(m)e i~q
~Rl e iωt

ω2eα(m) =
∑
β,m′

eβ(m′) (
∑
l′

(MmMm′)
− 1

2 Φαβ(ll ′mm′)e i~q(~Rl′−~Rl ))︸ ︷︷ ︸
Dαβ(mm′,~q) dynamical matrix

Doris Vogtenhuber
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Phonons

Bulk

VASP calculates phonons at the zone-center
⇒ supercell approach

the elements of the Hessian Matrix are calculated either by

finite displacement of the ions:
IBRION = 5,6; NFREE, POTIM

assume: displacements are within the harmonic limit
using density functional perturbation theory IBRION = 7,8

the tags making use of the symmetry (IBRION = 6,8) can be
used in vasp.5.2 only

Doris Vogtenhuber
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Phonons

Vibrational Modes of Molecules

select vibrational modes of interest using Selective

Dynamics in POSCAR (eg. change of the modes of a
molecules upon adsorption on a surface)

vibrational frequencies of adsorbates: usually calculated
accurately if

only the adsorbate itself and the NN substrate atoms are not
kept fixed
in any case: test how many “shells” have to be included to
converge the frequencies
saves computing time
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Problem Handling

possible sources of errors

negative frequencies (imaginary modes):

may indicate structural instabilities (mode softening),
or: calculation not properly converged −→ increase EDIFF

from the default value

VASP.4.6 only: POTIM has to be set explicitely:
recommended POTIM = 0.015 or smaller, the default value
(0.5) certainly is not within the harmonic limit.
−→ unreasonable frequencies

VASP can not continue from an unfinished run. −→ for the
calculation of eg vibration frequencies of adsorbates (large
number of atoms in the unit cell): reduce the calculated
vibration modes to a reasonable number

Doris Vogtenhuber
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Introduction

General Remarks

classical equations of motion (EOM) for atoms in a
microcanocical NVE ensemble (p: momenta , q: positions)

H(p, q) =
N∑
i=1

~pi
2

mi
+ V (q1, .....qn)

dp

dt
= −∂H(p, q)

∂q
,

dq

dt
=
∂H(p, q)

∂p

ergodic hypothesis: ensembe and time averages are related:

〈A〉H =

∫
dpdqA(q)e

− H
kBT∫

dpdqe
− H

kBT

=
1

τ

∫ τ

0

dtA(t)

⇒ MD can be used to compute observables A.
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Standard Version

standard MD: on the Born-Oppenheimer surface,
Hellmann-Feynman forces, Thermostat: Nosé

Newtonian EOM for the set of atoms i ,Mi
~̈Ri (t) = − ∂E

∂~Ri (t)

−→ coupled set of equations, wavefunctions kept are
orthonormal via a Lagrangian multiplier λij

µψ̈i (~r , t) = − δE

δψ∗i (~r , t)
+
∑
j

λijψj(~r , t)

Verlet algorithm with damping factor (friction term) µ

~vN+1/2 = ((1− µ/2)~vN−1/2 − 2α~FN)/(1 + µ/2)

~xN+1 = ~xN + ~vN+1/2
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MD Algorithms implemented in VASP

Introduction: (Chemical) Reactions

for any reaction, according to Arrhenius’ law:

dc0(i)

dt
= −kc0(i) k = Ae

−∆E‡
kBT , A : Arrhenius prefactor

Eyring-Polanyi theory: k = kBT
h e

−∆A‡
kBT

∆A‡. . . free energy difference between the transition state (‡)
and the initial state (0).

the free energy A can be evaluated via statistical
thermodynamics:

Ai = −kBT log Qi ⇒ k = −kBT

h
· Q‡

Q0
Q : partition function
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Introduction

Some Statistics’ Basics

Qtot for species i Qtot
i = Qtrans

i Qrot
i Qvib

i Qelecronic
i

in extended systems with translational symmetry:
Qtrans

i and Qrot
i are constant and cancel out

Qvib
i : Qvib

i =
∏M

i=1
e
− hνi

2kBT

1−e
− hνi

kBT

(harmonic approx.)

Qelectronic
i : Qel

i = e
− Ei

kBT ⇒ Qel,‡
i

Qel,0
i

= e
−

∆E
‡
i

kBT

the reaction constant k is given as

k = −kBT

h
· Qvib,‡

Qvib,0
· e−

∆E
‡
i

kBT
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Advanced MD Techniques

standard version of MD:

uses Carthesian coordinates
transition states: obtained using the Nudged Elastic Band
(NEB) method
−→ inefficient, slow for chemical reactions

improvement: Advanced MD Techniques

instead of cartesian coordinates: use a more clever choice of
delocalized, internal coordinates ξ (bond lenghts, -angles,. . . )
ergodic hypothesis used to calculate 〈A〉 via its time average

implemented in VASP.5 by Tomas Bucko

compile VASP with -Dtbdyn to replace standard MD by
advanced MD techniques
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Advanced MD Techniques

in systems with richly structured Potential Energy
Hypersurfaces (PES): forces on the atoms might not drag the
system over an energy barrier of the PES

⇒ the system gets stuck in a basin of the PES

methods to avoid this behavior:

add a bias potential Ṽ (ξ) to enhance the sampling in regions
of the PES with low probability P(ξi ) (eg transition state
regions):
“umbrella sampling”
constrain the MD by adding geometrical constraints via
additional terms in the Lagrangian, enforcing the constraint
“blue moon sampling”

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
MD Algorithms implemented in VASP
Thermostats implemented in VASP
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Advanced MD Techniques: Biased MD

a bias potential Ṽ (ξ) is used to enhance sampling of the
internal coordinate ξ(q)

H̃(p, q) = H(p, q) + Ṽ (ξ), ξ = ξ(q)

P̃(ξi ) = 〈δ(ξ(q)− ξi )〉H̃ =

∫
δ(ξ(q)− ξi )e

− H̃
kBT dpdq∫

e
− H̃

kBT dpdq

2. recover the correct distribution of A at the end by using

〈A〉H =

〈
A(q)e

Ṽ
kBT

〉
H̃〈

e
Ṽ

kBT

〉
H̃
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Advanced MD Techniques: Metadynamics

additional DOFs (α) driving the reaction: ξα, ξ̇α (velocity)
and mass µα, are coupled to the relevant geometrical
parameters (collective variables Ξα(x)) via harmonic springs
with force constants kα:

L = L0 +
∑
alpha

1

2
µαξ̇α

2 −
∑
alpha

1

2
kα(Ξα(x)− ξα)2 − Ṽ (t, ξ)

Ṽ (t, ξ) = h
∑t/tG

i=1 e−
|ξ(t)−ξ(itG )|2

2w2

sum of Gaussian hills (hi ,wi ) updated at every time-step tG
during the calculation

tG : 1-2 orders of magnitude > than ∆t of the MD

A(ξ)t=∞ = − limt→∞ Ṽ (t, ξ) + const

T. Bucko, J.Phys.Cond.Matt. 20, 064211 (2008)
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Advanced MD Techniques: Constrained MD

modify the Lagrange multiplier L by adding a term including
all geometric constraints r :

L(q, q̇)∗ = L(q, q̇) +
r∑

i=1

λiσi

with σi = ξi (q)− ξi , ξi . . . fixed variable
1 standard leap-frog MD to obtain −→ qi (t + δt)
2 use new positions to compute λi∀ constraints
3 update ~v and q by adding a contribution due to the restoring

force (≈ λ) −→ qi (t + δt)
4 repeat 1-3 until |σ(q)| matches the convergence criterium

(SHAKE algorithm)
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Advanced MD Techniques: TD integration of A-gradients

T. Bucko, J.Phys.Cond.Matt. 20, 064211 (2008)

the #DOF dynamical variables of Ĥ are split into

the active reaction variable ξ∗(pξ, qξ), defining the reaction
path 1 −→ 2, (slow modes)
inactive set q ={q1, . . . , qM−1}, pq (fast modes; not frozen,
but do not contribute to the minimum A-path as their thermal
motions are nearly harmonic)

∆A1−→2 =

∫ ξ(2)

ξ(1)

dξ

(
∂A

∂ξ

)
ξ∗

ξ is constrained to remain constant to ξ∗ ⇒ ξ̇ = 0,

also, ⇒ pξ is not sampled in the MD
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Advanced MD Techniques: TD integration of A-gradients

the Hamiltonians of the constrained (Hc
ξ∗) and unconstrained (H)

ensembles are:

Hc
ξ∗ =

1

2
ptXp + V (q, ξ)

H = Hc
ξ∗ + pt

ξ(Y · pq) +
1

2
(pt
ξZ pξ)

with

Xα,β =
M∑
i=1

1

mi

∂qα
∂xi

∂qβ
∂xi

,Yα =
M∑
i=1

1

mi

∂ξ

∂xi

∂qβ
∂xi

,Z =
M∑
i=1

1

mi

(
∂ξ

∂xi

)2

(α, β = 1, . . .M − 1)
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Advanced MD Techniques: TD integration of A-gradients

constrained and unconstrained ensemble averages of a
quantity O are related via a “blue moon” correction
E.A.Carter et.al., Chem.Phys.Lett 156, 472 (1989)

〈O〉 =

〈
OZ−

1
2

〉
ξ∗〈

Z−
1
2

〉
ξ∗

the constraints on the system to remain on the reaction path
are included via the Lagrangian multiplier λ (accounting for
the reaction coordinate, calculated using the SHAKE
algorithm) in the modified Lagragian

L∗(x, ξ, ẋ) = L(x, ẋ) + λ(ξx− ξ)
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Advanced MD Techniques: TD integration of A-gradients

the free energy gradients can then be calculated:(
∂A

∂ξ

)
ξ∗

=
1

< Z−
1
2 >ξ∗

〈
Z−

1
2

[
−λξ + kBTZ−1

M∑
i=1

1

mi

∂ξ

∂xi

∂Z

∂xi

]〉
ξ∗

crucial for blue moon ensemble techniques: appropriate choice
of the parameter ξ
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Advanced MD Techniques: Slow Growth Approach

linear change of the free-energy profile along a geometric
parameter ξ from ξinitial state −→ ξfinal state with velocity ξ̇

irreversible work w irrev to perform this transformation:

w irrev
1→2 =

∫ ξf.s.

ξi.s.

∂V (q)

∂ξ
· ∂ξ
∂t

dt

w irrev
1→2 is related to the free energy:

e
−A1→2

kBT =

〈
e
−w irrev

1→2
kBT

〉
for infinitesimally small ξ̇ (adiabatic transformation):
w irrev

1→2 = ∆A (free energy difference)
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Parinello-Rahman dynamics

NpT ensembles with the enthalpy H = E + pV

EOM of the atoms’ and the lattice DOFs:

L(s,h, ṡ, ḣ) =
1

2

N∑
i=1

mi ṡ
t
i h

thṡi − V (s,h) +
1

2
WTr(ḣt ḣ)− pextΩ

si : atomic positions, h: matrix formed by the lattice vectors,
Ω = deth: cell volume, W [m]: constant, mass of the lattice DOFs

thermostat to be used: Langevin Thermostat
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MD-related files in VASP

standard MD: PCDAT (OUT): pair correlation function

advanced MD (-Dtbdyn)

ICONST (IN): constraints to geometry parameters (bond

lengths, - angles, direct coordinates of ~a,~b,~c , constraint
status,. . . )
PENALTYPOT (IN): bias potentials (position in the space of
active coordinates, height and width of the Gaussian hills)
REPORT (OUT): MD-related output
HILLSPOT (IN/OUT): Gaussian hills generated on the fly
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The Nosé Thermostat

system is coupled to 1 additional DOF (=heat bath s)

non-Hamiltonian EOM of the extended system:

MI
~̈RI (t) = − ∂E

∂~RI (t)
−MI

~̈RI (t)
ṡ(t)

s(t)

Q
d(ṡ(t)/s(t))

dt
= −

∑
I

MI |~̈RI (t)|2 − (3N − 1)︸ ︷︷ ︸
#DOF

kBT

Q Nosé mass: response of s to the fluctuations of the ionic system

characteristic frequency of the thermostat at T : ω2
T = 2gkBT

Q

equilibration ions – heat bath: coupling of the system to the

Thermostat is most effective if ωT is of the same order of magnitude

of the characteristic frequency of the system to which it is coupled.
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The Nosé Thermostat

coupling of the system to the thermostat via ωT (∼ Q−1)
corresponds to a canonical ensemble at fixed temperature T :

using the Nosé thermostat: conservation of the expectation
value of the energy for the combined system (cell +
thermostat)

Ω = Ωmc +
1

2
(

ṡ

s
)2 + 3(N − 1)kBT ln s

micro-canonical ensemble: conservation of the energy Ωmc :

Ωmc = Tions︸ ︷︷ ︸
Ekin

+ E [~RI , ψi , fi ]︸ ︷︷ ︸
internal E

+ TSe i [fi ]︸ ︷︷ ︸
electr. entropy
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Main Input Parameters for standard MDs (Nosé Thermostat)

in INCAR

IBRION = 0: switches ionic relaxation algorithm to MD
NSW: number of MD steps (has to be given)
SMASS: choice of the ensemble
POTIM: time step in fs
TEBEG, TEEND: starting and final T
(eg for simulated annealing)
PREC = Normal: recommended, (Low may lead to drifts)

in POSCAR (optional): appended to the block of ionic
positions, initial velocities ~vin of the ions can be given (in
Å/fs)

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
MD Algorithms implemented in VASP
Thermostats implemented in VASP

Thermostats implemented in VASP

INCAR: Choice of the Nosé mass: SMASS

SMASS = -3: microcanonical ensemble: conservation of the
total free energy (−→ no thermostat), ions are accelerated by
Hellmann-Feynman forces calculated from ab initio

SMASS = -2: the initial velocities (~vin) (read from POSCAR)
are kept constant. actual step size: ~vin*POTIM

SMASS = -1: rescaling of T after each NBLOCK step:

T = TEBEG + (TEEND - TEBEG) * NSTEP / NSW

between the T -jumps: microcanonical ensemble conditions
simulated annealing

SMASS = 0: canonical ensemble; the Nosé mass Q is
determined by VASP, averaging over 40 time-steps

SMASS > 0: Q set explicitely: it controls the frequency of
T-oscillations
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The Andersen Thermostat

coupling to the heat bath via random collisions of randomly
chosen atoms with the heat bath −→ stochastic impulsive
forces on the atoms

average number of collisions per atom and time-step:
ANDERSEN PROB

ANDERSEN PROB = 0 corresponds to a microcanonical NVE
ensemble.

VASP allows for up to 3 different sub-systems, coupled to 3
different Andersen thermostats
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The Langevin Thermostat

T is maintained via modified EOMs:

MI
~̈RI (t) = −~Fi + ~fi − γi~pi

~fi . . . random force with dispersion σi = 2miγikBT
∆t

NVT MD: IBRION=0, ISIF=2, MDALGO=3

NpT MD: IBRION=0, ISIF=3, MDALGO=3

LANGEVIN GAMMA L: . . . friction coefficient for the lattice DOF
PMASS: mass for the lattice DOF
(PSTRESS): forces acting on the lattice DOF:
components of the stress tensor σij are used to calculate the
changes of the lattice constants and angles
⇒ increased ENCUT to avoid Pulay stress

Doris Vogtenhuber



Ionic Relaxation
Lattice Relaxation

Phonons
Molecular Dynamics

Introduction
MD Algorithms implemented in VASP
Thermostats implemented in VASP
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Choice of the Thermostat: MDALGO

0: standard MD as in VASP compiled without -Dtbdyn

1: Andersen

11: Metadynamics with Andersen

13: Andersen, up to 3 subsystems coupled to up to 3
independent Thermostats

2: Nosé Hoover

21: Metadynamics with Nosé Hoover

3: Langevin thermostat

Doris Vogtenhuber
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