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Introduction

Basic Considerations

@ Hermiticity of H —s forces on the atoms can be calculated
via the Hellmann-Feynman theorem

VieoR) = (;;Iwo | Ho(R) | Wo) = (Wo(R) | ViHe(R) | Wo(R))

@ Forces acting on the ions are given by the expectation value of
the gradient of the electronic Hamiltonian in the ground-state

@ atomic coordinates in a cell with fixed cell shape:
Hellmann-Feynman forces

@ geometry of the unit cell (volume, shape):
Hellmann-Feynman stresses
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Introduction

... Basic Considerations

in equilibrium: E(ﬁ, V, cellshape...) = min.

(1): find the atoms’ positions R minimizing E

= search for the (local) minimum of E(R) = f(X) with, f

expanded around equilibrium X°

-, 1 1
f(x) =~ a+b>‘<'+§>'<’B>_<’:5+§(>_<'—>"<’O)B(>_<’f>?O)

0%f

B =S i =
Y 0x;0x;

Hessian matrix

at a stationary point the gradient of f (gj(X)) vanishes:

Ei(X) =8 =3;By(X— %) =0

at a minimum: B: has to be positive definite
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... Basic Considerations: Newton Algorithm

@ start with an arbitrary point X
@ calculate the gradient of f at X1:
g(x!) = 5% = B(x' - %)
© perform a step
R =5 - BIgRY)

@ in practice: B is approximated by the largest eigenvalue of the
Hessian matrix, pax(B)

@ steepest descent algorithm
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Steepest Descent Algorithm

@ guess X!

ax Q calculate g(x1)
min © step along the steepest
descent direction

—'2 Xl 1 —»()?1)

© repeat 2+3 —
converged geometry
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Convergence of the Steepest Descent Algorithm

@ minimize the number of steps requested to reach the afforded
accuracy in the ion positions: step-widths along g(x')
@ Eigenvalues of B: vibrational modes of the system
o [max: “hardest mode” maximum stable step width
@ [in: “softest mode” slowest convergence
@ to reduce the error in all components to a certain fraction, the
number of steps can be estimated from ';ma

min

@ use preconditioning of B to speed up convergence
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Algorithms used in VASP

@ aims:

© reach asymptotic convergence rates
@ maintain the relaxation history

@ Quasi-Newton Schemes (DIIS): direct inversion in the iterative
subspace

e Conjugate Gradient (GC): search directions are conjugated to
the previous seach directions

e Damped Molecular Dynamics (MD): minimization problem is
cast into a simulated annealing approach
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Algorithms used in VASP

o simple Quasi-Newton Scheme: for a set of points X' and
gradients g' (i=1,...,N)

@ find a linear combination of X' which minimizes g’
@ constraint: ) .o = 1:

E al“‘l = § al"l

E 'R — E a'39)

= E o'B x —x0 E a’#’
i

@ gradient: linear in its arguments
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Algorithms used in VASP

The Full DIIS Algorithm

@ start with a single initial point X’

@ steepest descent step along gradient g(X!) : % = X! — \g'

© — new gradient g2 = g(x?)

@ search for the minimal gradient in the subspace spanned by
g i— Bopr = > '8’

@ calculate the corresponding position Xopt = Ziai)_(’i

Qo — )_(‘3 - )_(opt - Agopt
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Algorithms used in VASP

full DIIS

y a% 4 dx! fral=1
x0 P

start with single initial point x°
steepest descent step (sds)

opt. position X3

sds from X1 along Zopt — X2
— (%)

linearity — gradient is known
in 2D

minimize f exactly
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Algorithms used in VASP

The Conjugate-Gradient Algorithm (CG)

@ search directions: conjugated to the previous seach directions
o start with x°

@ steepest descent step along gradient with line minimization
@ gradient at the current position g(x")
@ conjugate g(X") to the previous search direction:

2Ny _ =N S oN—1 _ (ExN) —g="1) - &(xN)
S(X ) - g(X )+7g(X )7 Y= g_»()—(»/\/_l) . g_»()—(»N_l)
@ line minimization along 5V
@ if g is not sufficiently small: continue with 1
o search directions are orthogonal (step 3): §VBs" VN, M
@ CG finds the min. of a quadratic function with k DOF in
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The CG Algorithm

@ sds from X° along g°

o trial step(s) x,
Nx Z 1)7 — )?1

o — new gl = g(x)

e conjugate gt : —— 5!

e 5! points directly towards
the minimum

@ minimization along 3"
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Algorithms used in VASP

Damped MD (MD)

atoms' positions X are regarded as dynamic degrees of freedom

forces (=gradients) accelerate the motion of the atoms
equation of motions of the atoms: x = —2aF — ;ul?

introduce an additional friction term g

integration of this eqation: simple velocity Verlet algorithm

‘7N+1/2 = ((1 — /L/2)\7N_1/2 — 2C¥ﬁ/\/>/(1 aF u/2)

XN+1 = XN+ Vnt1/2
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Algorithms used in VASP

Damped MD (M

@ “rolling ball” with friction

0 (,“)
e @ 4 too small: minimum
overshot,

back-acceleration

@ 1 too large: relaxation
slows down

Doris Vogtenhuber



lonic Relaxation

Introduction . _
Algorithms used in VASP mlver5|tat
INCAR parameters in VASP, Problem wien

INCAR Parameters in VASP

Overview

Algorithm main flag additional flags | termination
DIIS IBRION =1 POTIM, NFREE | EDIFFG
CG IBRION =2 POTIM EDIFFG
damped MD | IBRION =3 POTIM, SMASS | EDIFFG

@ EDIFFG “convergence criterium”:
o EDIFFG >0: [(EN — EN-1)| < EDIFFG
o EDIFFG < 0: |FN| < |EDIFFG | Vi=1, Nions
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INCAR Parameters in VASP

Parameter Usage by the Algorithms of VASP

e DIIS

e POTIM (=0.5) generally determines the step size (no line
minimizations)

e NFREE # of ionic steps stored in the iteration history: for the
set of points X' and gradients g (i = 1,...,N)
NFREE (=5) = max(N)

o CG

e POTIM (=0.5) : size of the first trial step, the subsequent line
minimization is performed using Brent's algorithm

o damped MD: in V1), = ((1 — 1/2)n_1)a — 2aF‘N)/(1 +1/2)
e POTIM = «, good choices: 0.15 < POTIM <0.4
o SMASS (=0.4) = p, which should be & 2/T in /T max
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Choice of the most Appropriate Algorithm

yes
Really, this is too complicated CG

no yes

close to minimum freedom

no no

ery broad vib. spectrum

damped MD or QUICKMIN 0 degrees of freedo

no

DIIS
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Problem Handling

(Some Other) Reasons for Bad Convergence

@ unreasonable starting geometry (POSCAR)
e lattice parameters, atomic positions
e check OUTCAR for interatomic distances, forces of the input
geometry, external pressure, ( if ISIF > 0)
@ sub-optimal settings of (some) INCAR parameters
o bad electronic convergence of (one of) the ionic steps —
wrong forces
o check OSZICAR for the convergence of each ionic step: dE,
charge density convergence
increase NELM, decrease the (spin density) mixing parameters
choose a different BZ-integration method ISMEAR, SIGMA
choose a different electronic relaxation algorithm ALGO
basis sets too small (— aliasing errors)

@ is the k-mesh aiiroiriate? |modifi KPOINTS'
Doris Vogtenhuber
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Problem Handling

Aliasing Errors

@ related to errors caused by the truncated FFT grid

o folding theorem: p = [k, (Vg’) contain components up to
2n = 2Geytoft after back-transformation from p, to pg (V)

o residual Vector (V4): components up to 3Gytoft
@ Fourier grid has to include all wave-vectors up to 2Geytoff-

e if this is not the case: — aliasing (“wrap around”) errors:
components of p are wrapped around from the other side of
the box due to the periodicity

@ high frequency components are aliased to low-frequency
components
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Drifts in the Forces

@ impact of aliasing errors on the results::

@ in a lattice with perfect translation symmetry: if all atoms of
the cell are shifted by the same translation vector,

o E has to remain exactly the same
o forces sum up to 0: Yt F; =0

aliasing errors destroy the translational invariance:

= atoms equivalent by symmetry are equivalent no longer
= drifts

BUT VASP symmetrizes p and F explicitely unless ISYM=0
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Problem Handling

Drifts in the Forces
@ to reduce drifts in the forces (written in OUTCAR)
@ bulk & surfaces: increase the precision ENCUT, PREC

@ surfaces: in 3D periodic cell, the origin of the cell is arbitrary,
i.e. the slab may start drifting through the vacuum

o keep (at least) one layer fixed (Selective Dynamics option
in POSCAR)

o polar surfaces: include dipole corrections (IDIPOL, LDIPOL)
to avoid artificial electrostatic forces across the vacuum layer
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Cell Volume Optimization

Introduction

@ the equilibrium volume V. and shape of a crystal calculated
from ab initio depend on the XC-type used:

o LDA: overbinding — ag too small
e PBE, PWO91: underbinding — ag too large
e results are improved using specially designed functionals
(PBEsol, HSE),...
@ = accurate calculations should always be performed for the
cell at equilibrium for the respective XC-type to avoid artifacts
(unless there is good reason not to do so)
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Cell Volume Optimization

Strategies to obtain Veq

@ “by hand": series of calculations at different cell volumes, —
Veqg = V(min(E(V)):
very old-fashioned, almost impracticable for non-cubic cells

@ "by hand”: fitting to thermodynamic equations:
eg. Birch-Murnaghan fit

@ VASP: automatic optimization, based on the calculated
Hellmann-Feynman stresses

@ the automatic geometry optimization sensitively depends on
the quality of the used basis sets:

o E-cutoffs (completeness of the basis set), FFT-grids
e k-meshes
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Cell Volume Optimization

Energy Cutoff: Basis Sets

e at each k, the plane waves that are included in the basis have
to fulfill the criterium J2-[G + K2 < Ecuion

@ E.uor defined by ENCUT: default: max(ENMAX), given in
POTCAR for each element

o E ot = G2 =~ changes of cell volume and -shape

@ = the default cutoff should only be used for calculations with
fixed cell-shape and -volume, eg.
e frozen phonons

e surface and adsorption calculations
o MD (NVT ensemble)
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Cout
] {
B
. by EI0 /
b1= 21t 1
Geut
/ -
] T
b, + O i
T1 b r 21t 1

explanation:

o lattice expanded 71 — 7]

o cutoff decreases by a a factor 7
1

o effective cutoff G/, is lower
o E is overestimated for larger Vs

@ the apparent Ve is too small
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Cell Volume Optimization

=—a 240 eV, basis set fixed
— o—o 240 eV, cutoff fixed
3 270 eV, basis set fixed
\Lu/ e—o 270 eV, cutoff fixed

36| <N%%MMW:

|
11 115 12 125 13

Cell Volume Optimization
INCAR parameters in VASP

Improvement using fixed basis sets?

start from WAVECAR with ISTART =2
NO!!, because

Efiegftfwe decreases with increasing V

= quality of the basis set becomes
worse with increasing V

= min(E(V)) is shifted
dense k meshes necessary to obtain
smooth curves (|k + G|2 )!

3
volumeV (A
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Cell Shape relaxations

Stress Tensor

@ VASP does not adopt the basis set in
1 a run

@ stress tensor oj;: implicitely calculated
with a fixed-basis-set setup

pressure (kBar)
3
o
I

default cutoff | o for Cu (270eV): contraction predicted
by error (p=-50 kB)
R T I @ increase ENCUT (by 30%) to

-100f
%0 250 30 30 400 e perform lattice relaxations
cutoff energy E(eV) o calculate stress tensors and pressure
_ 1
(P = 3Troy)
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Cell Shape relaxations

“recipe” for Determining Cell Shapes

@ always use an increased cutoff: ENCUT = 1.3*max(ENMAX)
@ do it step-wise:
@ start with 1-2 steps (NSW) from your guessed input geometry
(coarse pre-relaxation)
@ delete WAVECAR
© continue from CONTCAR with slightly more steps
@ repeat 1-3 until the remaining pressure (and stress tensor
components) are in accordance with the afforded accuracy

@ if the space-group of the system is known, use ISYM = 2 to
avoid symmetry violations due to numerical errors

Doris Vogtenhuber
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Basics

@ vibrations of the crystal lattice influence

elastic

thermodynamic

optical

electronic transport properties

“soft modes” indicate

phase transitions (bulk) or

dissociation (dissociative adsorbtion processes)
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Introduction

BEeS

@ if atom m in cell / of a crystal Ry(/m) is displaced by @
— R(Im) = Ro(Im) + d(Im)

@ kinetic energy: T =13, M,i2(Im), potential energy: expanded

R = OV(R(Im
V(R(Im)) = MJ’ZM%(M
Ima @
=Vo=0
=0 in equilibrium
1 2 V(R(Im)) »
+ §Im§n,ﬁ OR.(Im)YORs(I'm") ua(Im)ug(I'm")

&, p(/I"'mm’) force constant

o ®,5(/'mm'): derivative taken at R(/m) = Ry(Im)
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Introduction

BEeS

o ®,3(/'mm'’): component « of the force acting on atom (/m),
caused by the displacement of atom (/'m’) in direction

@ equations of motion

= . ov _ / / ! sl
Mmua(/m) - aua(lm) - I;ﬁ q)Oéﬁ(” mm )Uﬁ(/ m )

@ use symmetry

@ harmonic ansatz: u,(Im,t) = \/Mmea(m)eiaﬁ’ei“t

wle,(m) = Z es(m') (Z(MmMm/)i%d)ocﬂ(///mm/)eia(ﬁ”iﬁl))
B,m’ I

Dog(mm’,q) dynamical matrix
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Phonons

@ VASP calculates phonons at the zone-center
= supercell approach

@ the elements of the Hessian Matrix are calculated either by
o finite displacement of the ions:
IBRION = 5,6; NFREE, POTIM
assume: displacements are within the harmonic limit
e using density functional perturbation theory IBRION = 7,8

@ the tags making use of the symmetry (IBRION = 6,8) can be
used in vasp.5.2 only
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Phonons

Vibrational Modes of Molecules

@ select vibrational modes of interest using Selective
Dynamics in POSCAR (eg. change of the modes of a
molecules upon adsorption on a surface)

@ vibrational frequencies of adsorbates: usually calculated
accurately if

e only the adsorbate itself and the NN substrate atoms are not
kept fixed

@ in any case: test how many “shells” have to be included to
converge the frequencies

@ saves computing time
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Problem Handling

possible sources of errors

@ negative frequencies (imaginary modes):
e may indicate structural instabilities (mode softening),
e or: calculation not properly converged — increase EDIFF
from the default value
@ VASP.4.6 only: POTIM has to be set explicitely:
recommended POTIM = 0.015 or smaller, the default value
(0.5) certainly is not within the harmonic limit.
— unreasonable frequencies
@ VASP can not continue from an unfinished run. — for the
calculation of eg vibration frequencies of adsorbates (large
number of atoms in the unit cell): reduce the calculated
vibration modes to a reasonable number
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Molecular Dynamics

Introduction
General Remarks
o classical equations of motion (EOM) for atoms in a
microcanocical NVE ensemble (p: momenta , g: positions)

N L2
pi
Z— V(gi,....-qn)
9H(p, q) @ _ OH(p, q)
T dt Op

dp _ _
dt dq

@ ergodic hypothesis: ensembe and time averages are related

H
dpdgA(q)e T 1 [T
[ dpdqA(q)e” % :7/ e
T Jo

<A>H = —H_
[ dpdge™ %™
@ = MD can be used to compute observables A.
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Molecular Dynamics

MD Algorithms implemented in VASP

Standard Version
@ standard MD: on the Born-Oppenheimer surface,
Hellmann-Feynman forces, Thermostat: Nosé

o Newtonian EOM for the set of atoms i, M;R;(t) = —837_@)
@ — coupled set of equations, wavefunctions kept are
orthonormal via a Lagrangian multiplier \;;

. SE
(7, t) = “SFGD +ZAU¢, 7, t)

e Verlet algorithm with damping factor (friction term) p

Wtz = (1= 1/2)n1j2 — 2aFn)/(1+ p/2)
XN+l = XN+ Vg2
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Introduction: (Chemical) Reactions

e for any reaction, according to Arrhenius’ law:

deo (i _aet
C;EI) = —keo(i) k= Ae fBET, A : Arrhenius prefactor

o Eyring-Polanyi theory: k = “E~e *sT
AAY. . free energy difference between the transition state ()
and the initial state (0).
@ the free energy A can be evaluated via statistical
thermodynamics:
ke T QF

Ai=—kgTlogQ; = k = —Th Qo Q : partition function

Doris Vogtenhuber
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Introduction

Some Statistics' Basics
Qtot for speC|es i Qtot QtransQrot QVlb Qelecronlc
in extended systems with translational symmetry:

Q2 and QI°' are constant and cancel out

hl/
. . 2kp T T
° Q’.Vlb; QIYlb = Hf‘il i (harmonic approx.)
1—e_kBT
) _E Qo g
° ngjlcctronlc: Q;al — e kT — — e kT

Qel ,0 —
@ the reaction constant k is given as

kT QvibE  _og

k:—7-7~e kg T

h Qb0
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MD Algorithms implemented in VASP

Advanced MD Techniques

@ standard version of MD:

e uses Carthesian coordinates

e transition states: obtained using the Nudged Elastic Band
(NEB) method

o — inefficient, slow for chemical reactions

@ improvement: Advanced MD Techniques

e instead of cartesian coordinates: use a more clever choice of
delocalized, internal coordinates & (bond lenghts, -angles,. . .)
e ergodic hypothesis used to calculate (A) via its time average

@ implemented in VASP.5 by Tomas Bucko

e compile VASP with -Dtbdyn to replace standard MD by
advanced MD techniques

Doris Vogtenhuber
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Advanced MD Techniques

@ in systems with richly structured Potential Energy
Hypersurfaces (PES): forces on the atoms might not drag the
system over an energy barrier of the PES

@ = the system gets stuck in a basin of the PES
@ methods to avoid this behavior:

e add a bias potential V(¢) to enhance the sampling in regions
of the PES with low probability P(&;) (eg transition state
regions):

“umbrella sampling”

e constrain the MD by adding geometrical constraints via
additional terms in the Lagrangian, enforcing the constraint
“blue moon sampling”

Doris Vogtenhuber
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MD Algorithms implemented in VASP

@ a bias potential V(¢) is used to enhance sampling of the
internal coordinate £(q)

H(p.q) = H(p.q)+ V(¢), &€=¢(q) _
J (&(a) = &)e %7 dpda
fe_kBLpodq

P&) = (5(&a)—&))g=

@ 2. recover the correct distribution of A at the end by using

Doris Vogtenhuber
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Advanced MD Techniques: Metadynamics

e additional DOFs («) driving the reaction: £, &4 (velocity)
and mass i, are coupled to the relevant geometrical
parameters (collective variables =,(x)) via harmonic springs
with force constants k:

L=Lot Y gabe’ = 3 ShalEal®) —€af = V(5,6)

alpha alpha

l&()—=&(itg)1?
o V(t,6)=hY e a2
sum of Gaussian hills (h;, w;) updated at every time-step t¢
during the calculation

@ tg: 1-2 orders of magnitude > than At of the MD
0 A(E)it—oo = — lime_s00 V(t,€) + const

Doris Vogtenhuber
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MD Algorithms implemented in VASP

Advanced MD Techniques: Constrained MD

e modify the Lagrange multiplier £ by adding a term including
all geometric constraints r :

£(q. q)* = £(q7 q) + Z /\iai
i=1

with o; = &(q) — &, & . . . fixed variable

@ standard leap-frog MD to obtain — q;(t + 0t)

@ use new positions to compute \;V constraints

© update V and g by adding a contribution due to the restoring
force (= A) — q;(t + dt)

@ repeat 1-3 until |o(q)| matches the convergence criterium
(SHAKE algorithm)
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Advanced MD Techniques: TD integration of A-gradients
@ T. Bucko, J.Phys.Cond.Matt. 20, 064211 (2008)

@ the #DOF dynamical variables of A are split into

o the active reaction variable £*(p¢, ge), defining the reaction
path 1 — 2, (slow modes)

e inactive set q ={q1,...,qm—1},pq (fast modes; not frozen,
but do not contribute to the minimum A-path as their thermal
motions are nearly harmonic)

£(2) AA
W ()
7 e 9 / ¢

@ ¢ is constrained to remain constant to £* = f =0,
@ also, = p¢ is not sampled in the MD

Doris Vogtenhuber
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Advanced MD Techniques: TD integration of A-gradients

the Hamiltonians of the constrained (Hg.) and unconstrained (H)
ensembles are:

1
He. = SpXp+V(q,§)

) 1
= Hg*+p§(Y~pq)+§(p§Zp5)

with
M

 E 1090095, o1 060qs , w1 [0\
X""‘B_Z;,-Gx,- aX,"Y”_Z;,'GX,' 8X,',Z_Z;,' aX,'

(a,8=1,...M—1)
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Advanced MD Techniques: TD integration of A-gradients

@ constrained and unconstrained ensemble averages of a

quantity O are related via a “blue moon” correction
E.A.Carter et.al., Chem.Phys.Lett 156, 472 (1989)

<(’)Z*%>£*
(7).

@ the constraints on the system to remain on the reaction path
are included via the Lagrangian multiplier A (accounting for
the reaction coordinate, calculated using the SHAKE
algorithm) in the modified Lagragian

£7(x,6.%) = L(x,X) + A(éx — €)
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Advanced MD Techniques: TD integration of A-gradients

@ the free energy gradients can then be calculated:
>§*
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@ crucial for blue moon ensemble techniques: appropriate choice
of the parameter £
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Advanced MD Techniques: Slow Growth Approach

@ linear change of the free-energy profile along a geometric
parameter £ from Sinitial state ? £ﬁ11al state with VeIOCity 5

e irreversible work w'™®¥ to perform this transformation:

: f 9V(q) €
errev: 7dt
. /5 05 ot

o Wiy is related to the free energy:
_ Ao _ W
e k8T = ( e kgl

e for infinitesimally small £ (adiabatic transformation):
Wiy = AA (free energy difference)
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Parinello-Rahman dynamics

@ NpT ensembles with the enthalpy H = E + pV
@ EOM of the atoms’ and the lattice DOFs:

1 ..
L(s,h,5,h) Zm, fhthg; — V(s,h) + S WTr(h'h) — pes

s;: atomic positions, h: matrix formed by the lattice vectors,
Q = deth: cell volume, W[m]: constant, mass of the lattice DOFs

@ thermostat to be used: Langevin Thermostat
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MD-related files in VASP

e standard MD: PCDAT (OUT): pair correlation function

@ advanced MD (-Dtbdyn)

e ICONST (IN): constraints to geometry parameters (bond
lengths, - angles, direct coordinates of &, b, ¢, constraint
status,. . .)

e PENALTYPOT (IN): bias potentials (position in the space of
active coordinates, height and width of the Gaussian hills)

e REPORT (OUT): MD-related output

e HILLSPOT (IN/OUT): Gaussian hills generated on the fly
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The Nosé Thermostat

@ system is coupled to 1 additional DOF (=heat bath s)

@ non-Hamiltonian EOM
M/R’/(t)

d(s(t)/s(t))
t

S

of the extended system:

O 9E s ()

T 9R(b) Miki(8) 35

- —zljm,ﬁ(t)ﬁ—(sN—l)ksT
#DOF

@ @ Nosé mass: response of s to the fluctuations of the ionic system

@ characteristic frequency of the thermostat at T: sz =

2ng T
Q

@ equilibration ions — heat bath: coupling of the system to the

Thermostat is most effective if w is of the same order of magnitude

of the characteristic frequency of the system to which it is coupled.
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The Nosé Thermostat

@ coupling of the system to the thermostat via wr(~ Q1)
corresponds to a canonical ensemble at fixed temperature T:
@ using the Nosé thermostat: conservation of the expectation

value of the energy for the combined system (cell +
thermostat)

Q:ch+1(s

= )2 +3(N—1)kgTIns

s
@ micro-canonical ensemble: conservation of the energy €2,,c:

ch: ions+E[ﬁ/awi7ﬁ]+ T‘Sei[ﬁ]
— — ~———

Exin internal E electr. entropy
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Main Input Parameters for standard MDs (Nosé Thermostat)

@ in INCAR

IBRION = O: switches ionic relaxation algorithm to MD
NSW: number of MD steps (has to be given)

SMASS: choice of the ensemble

POTIM: time step in fs

TEBEG, TEEND: starting and final T

(eg for simulated annealing)

e PREC = Normal: recommended, (Low may lead to drifts)

@ in POSCAR (optional): appended to the block of ionic
positions, initial velocities V;, of the ions can be given (in

A/ts)
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INCAR: Choice of the Nosé mass: SMASS

@ SMASS = -3: microcanonical ensemble: conservation of the
total free energy (— no thermostat), ions are accelerated by
Hellmann-Feynman forces calculated from ab initio

@ SMASS = -2: the initial velocities (V,) (read from POSCAR)
are kept constant. actual step size: v;,*POTIM
@ SMASS = -1: rescaling of T after each NBLOCK step:

o T= TEBEG + (TEEND - TEBEG) * NSTEP / NSW
e between the T-jumps: microcanonical ensemble conditions
e simulated annealing

@ SMASS = 0: canonical ensemble; the Nosé mass @ is
determined by VASP, averaging over 40 time-steps

@ SMASS > 0: @ set explicitely: it controls the frequency of

-0 dL10]
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The Andersen Thermostat

@ coupling to the heat bath via random collisions of randomly
chosen atoms with the heat bath — stochastic impulsive
forces on the atoms

@ average number of collisions per atom and time-step:
ANDERSEN_PROB

o ANDERSEN_PROB = 0 corresponds to a microcanonical NVE
ensemble.

@ VASP allows for up to 3 different sub-systems, coupled to 3
different Andersen thermostats
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The Langevin Thermostat

@ T is maintained via modified EOMs:

MiRi(t) = —F; + fi — vipi
1?,-. ..random force with dispersion o; = %

o NVT MD: IBRION=0, ISIF=2, MDALGO=3

o NpT MD: IBRION=0, ISIF=3, MDALGO=3
LANGEVIN_GAMMA L: ... friction coefficient for the lattice DOF
PMASS: mass for the lattice DOF
(PSTRESS): forces acting on the lattice DOF:
components of the stress tensor o are used to calculate the
changes of the lattice constants and angles
= increased ENCUT to avoid Pulay stress
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Choice of the Thermostat: MDALGO

0: standard MD as in VASP compiled without -Dtbdyn

1: Andersen

11: Metadynamics with Andersen

13: Andersen, up to 3 subsystems coupled to up to 3
independent Thermostats

2: Nosé Hoover

21: Metadynamics with Nosé Hoover

3: Langevin thermostat
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